Statistical methods for use in proficiency testing by interlaboratory comparison

Méthodes statistiques utilisées dans les essais d’aptitude par comparaison interlaboratoires
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>0 Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 General principles</td>
<td>4</td>
</tr>
<tr>
<td>4.1 General requirements for statistical methods</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Basic model</td>
<td>5</td>
</tr>
<tr>
<td>4.3 General approaches for the evaluation of performance</td>
<td>5</td>
</tr>
<tr>
<td>5 Guidelines for the statistical design of proficiency testing schemes</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Introduction to the statistical design of proficiency testing schemes</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Basis of a statistical design</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Considerations for the statistical distribution of results</td>
<td>7</td>
</tr>
<tr>
<td>5.4 Considerations for small numbers of participants</td>
<td>8</td>
</tr>
<tr>
<td>5.5 Guidelines for choosing the reporting format</td>
<td>8</td>
</tr>
<tr>
<td>6 Guidelines for the initial review of proficiency testing items and results</td>
<td>10</td>
</tr>
<tr>
<td>6.1 Homogeneity and stability of proficiency test items</td>
<td>10</td>
</tr>
<tr>
<td>6.2 Considerations for different measurement methods</td>
<td>11</td>
</tr>
<tr>
<td>6.3 Blind error</td>
<td>11</td>
</tr>
<tr>
<td>6.4 Visual review of data</td>
<td>11</td>
</tr>
<tr>
<td>6.5 Robust statistical methods</td>
<td>12</td>
</tr>
<tr>
<td>6.6 Outlier techniques for individual results</td>
<td>12</td>
</tr>
<tr>
<td>7 Determination of the assigned value and its standard uncertainty</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Choice of method of determining the assigned value</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Determining the uncertainty of the assigned value</td>
<td>14</td>
</tr>
<tr>
<td>7.3 Formulation</td>
<td>15</td>
</tr>
<tr>
<td>7.4 Certified reference material</td>
<td>15</td>
</tr>
<tr>
<td>7.5 Results from one laboratory</td>
<td>16</td>
</tr>
<tr>
<td>7.6 Consensus value from expert laboratories</td>
<td>17</td>
</tr>
<tr>
<td>7.7 Consensus value from participant results</td>
<td>18</td>
</tr>
<tr>
<td>7.8 Comparison of the assigned value with an independent reference value</td>
<td>19</td>
</tr>
<tr>
<td>8 Determination of criteria for evaluation of performance</td>
<td>20</td>
</tr>
<tr>
<td>8.1 Approaches for determining evaluation criteria</td>
<td>20</td>
</tr>
<tr>
<td>8.2 By comparison of experts</td>
<td>20</td>
</tr>
<tr>
<td>8.3 By comparison from previous rounds of a proficiency testing scheme</td>
<td>20</td>
</tr>
<tr>
<td>8.4 By use of a general model</td>
<td>21</td>
</tr>
<tr>
<td>8.5 Using the repeatability and reproducibility standard deviations from a previous collaborative study of precision of a measurement method</td>
<td>22</td>
</tr>
<tr>
<td>8.6 From data obtained in the same round of a proficiency testing scheme</td>
<td>22</td>
</tr>
<tr>
<td>8.7 Monitoring inter-laboratory agreement</td>
<td>23</td>
</tr>
<tr>
<td>9 Calculation of performance statistics</td>
<td>23</td>
</tr>
<tr>
<td>9.1 General considerations for determining performance</td>
<td>23</td>
</tr>
<tr>
<td>9.2 Limiting the uncertainty of the assigned value</td>
<td>24</td>
</tr>
<tr>
<td>9.3 Estimates of deviation (measurement error)</td>
<td>25</td>
</tr>
<tr>
<td>9.4 z scores</td>
<td>26</td>
</tr>
<tr>
<td>9.5 z’ scores</td>
<td>27</td>
</tr>
<tr>
<td>9.6 Zeta scores</td>
<td>28</td>
</tr>
<tr>
<td>9.7 Ep scores</td>
<td>29</td>
</tr>
<tr>
<td>9.8 Evaluation of participant uncertainties in testing</td>
<td>29</td>
</tr>
<tr>
<td>9.9 Combined performance scores</td>
<td>30</td>
</tr>
</tbody>
</table>
10 Graphical methods for describing performance scores

10.1 Application of graphical methods

10.2 Histograms of results or performance scores

10.3 Kernel density plots

10.4 Bar-plots of standardized performance scores

10.5 Youden Plot

10.6 Plots of repeatability standard deviations

10.7 Split samples

10.8 Graphical methods for combining performance scores over several rounds of a proficiency testing scheme

11 Design and analysis of qualitative proficiency testing schemes (including nominal and ordinal properties)

11.1 Types of qualitative data

11.2 Statistical design

11.3 Assigned values for qualitative proficiency testing schemes

11.4 Performance evaluation and scoring for qualitative proficiency testing schemes

Annex A (normative) Symbols

Annex B (normative) Homogeneity and stability of proficiency test items

Annex C (normative) Robust analysis

Annex D (informative) Additional guidance on statistical procedures

Annex E (informative) Illustrative examples

Bibliography
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 69, Applications of statistical methods, Subcommittee SC 6, Measurement methods and results.

This second edition of ISO 13528 cancels and replaces the first edition (ISO 13528:2005), of which it constitutes a technical revision. This second edition provides changes to bring the document into harmony with ISO/IEC 17043:2010, which replaced ISO Guide 43-1:1997. It follows a revised structure, to describe better the process of the design, analysis, and reporting of proficiency testing schemes. It also eliminates some procedures that are no longer considered to be appropriate, and adds or revises some other sections to be consistent with ISO/IEC 17043 and to provide clarity and correct minor errors. New sections have been added for qualitative data and additional robust statistical methods.

This corrected version of ISO 13528:2015 incorporates the following corrections:

— 7.5.2.2, equation (5): “U_{char}” has been replaced with “u_{char}”;
— 9.8.2, NOTE: reference to “E.3” has been replaced with a reference to “E.4”;
— 10.3.2, iv, equation (19): an “addition” sign has been added between “q_{min}” and “(i-1)”;
— B.2.3, b), line before Table B.1: Reference “[33]” has been replaced with Reference “[32]”;
— B.2.3, Table B.1, first row, first column: “gm” has been replaced with “g”;
— B.2.3, paragraph below Table B.1: in the first formula, “F_{2m}” has been replaced with “F_{m}” and subscript for “-1” has been removed; in the second formula, subscript for “-1” has been removed;
— B.2.3 b), NOTE: the equation for \(F_1 \) is now divided by “(g-1)”;
— B.3, equations (B.7), (B.14) and (B.16): the terms \(s_x^2 \) and \(s_x \) have been replaced with \(s_x^2 \) and \(s_x \); in addition, in equation (B.16) the square root symbol has been moved outside the “max (0, ….)” bracket;

© ISO 2015 – All rights reserved
— B.3, equation (B.8): “s_t^2” has been replaced with “w_t^2”;
— C.3.1, NOTE 2, first line: “the” has been removed before “identical”;
— C.3.1, paragraph after equation (C.10), second line: the words “the modified data in” have been deleted.
— C.3.1, last note: “NOTE” has been replaced with “NOTE 3”, and Reference to “E.3 and E.4” has been replaced with a Reference to “E.1 and E.3”;

The following minor editorial corrections have been implemented for consistency throughout the document:
— 8.3.1, third bullet, last line: the first occurrence of “approved” (after “more”) has been deleted;
— 8.6.1, first line: “σ_{pb}” has been replaced with “(σ_{pt})” (for presentation consistency);
— B.4.1.2, second bullet, second line: the word “samples” has been replaced with “proficiency testing items” (for terminological consistency)
— Annexes D and E, titles: the first letters in all words after the first one is now in lower case (for presentation consistency).
0 Introduction

0.1 The purposes of proficiency testing

Proficiency testing involves the use of interlaboratory comparisons to determine the performance of participants (which may be laboratories, inspection bodies, or individuals) for specific tests or measurements, and to monitor their continuing performance. There are a number of typical purposes of proficiency testing, as described in the Introduction to ISO/IEC 17043:2010. These include the evaluation of laboratory performance, the identification of problems in laboratories, establishing effectiveness and comparability of test or measurement methods, the provision of additional confidence to laboratory customers, validation of uncertainty claims, and the education of participating laboratories. The statistical design and analytical techniques applied must be appropriate for the stated purpose(s).

0.2 Rationale for scoring in proficiency testing schemes

A variety of scoring strategies is available and in use for proficiency testing. Although the detailed calculations differ, most proficiency testing schemes compare the participant’s deviation from an assigned value with a numerical criterion which is used to decide whether or not the deviation represents cause for concern. The strategies used for value assignment and for choosing a criterion for assessment of the participant deviations are therefore critical. In particular, it is important to consider whether the assigned value and criterion for assessing deviations should be independent of participant results, or should be derived from the results submitted. In this Standard, both strategies are provided for. However, attention is drawn to the discussion that will be found in sections 7 and 8 of the advantages and disadvantages of choosing assigned values or criteria for assessing deviations that are not derived from the participant results. It will be seen that in general, choosing assigned values and assessment criteria independently of participant results offers advantages. This is particularly the case for the criterion used to assess deviations from the assigned value – such as the standard deviation for proficiency assessment or an allowance for measurement error – for which a consistent choice based on suitability for a particular end use of the measurement results, is especially useful.

0.3 ISO 13528 and ISO/IEC 17043

ISO 13528 provides support for the implementation of ISO/IEC 17043 particularly, on the requirements for the statistical design, validation of proficiency test items, review of results, and reporting summary statistics. Annex B of ISO/IEC 17043:2010 briefly describes the general statistical methods that are used in proficiency testing schemes. This International Standard is intended to be complementary to ISO/IEC 17043, providing detailed guidance that is lacking in that document on particular statistical methods for proficiency testing.

The definition of proficiency testing in ISO/IEC 17043 is repeated in ISO 13528, with the Notes that describe different types of proficiency testing and the range of designs that can be used. This Standard cannot specifically cover all purposes, designs, matrices and measurands. The techniques presented in ISO 13528 are intended to be broadly applicable, especially for newly established proficiency testing schemes. It is expected that statistical techniques used for a particular proficiency testing scheme will evolve as the scheme matures; and the scores, evaluation criteria, and graphical techniques will be refined to better serve the specific needs of a target group of participants, accreditation bodies, and regulatory authorities.

ISO 13528 incorporates published guidance for the proficiency testing of chemical analytical laboratories [32] but additionally includes a wider range of procedures to permit use with valid measurement methods and qualitative identifications. This revision of ISO 13528:2005 contains most of the statistical methods and guidance from the first edition, extended as necessary by the previously referenced documents and the extended scope of ISO/IEC 17043. ISO/IEC 17043 includes proficiency testing for individuals and inspection bodies, and Annex B, which includes considerations for qualitative results.

This Standard includes statistical techniques that are consistent with other International Standards, particularly those of TC69 SC6, notably the ISO 5725 series of standards on Accuracy: trueness and
precision. The techniques are also intended to reflect other international standards, where appropriate, and are intended to be consistent with ISO/IEC Guide 98-3 (GUM) and ISO/IEC Guide 99 (VIM).

0.4 Statistical expertise

ISO/IEC 17043:2010 requires that in order to be competent, a proficiency testing provider shall have access to statistical expertise and shall authorize specific personnel to conduct statistical analysis. Neither ISO/IEC 17043 nor this International Standard can specify further what that necessary expertise is. For some applications an advanced degree in statistics is useful, but usually the needs for expertise can be met by individuals with technical expertise in other areas, who are familiar with basic statistical concepts and have experience or training in the common techniques applicable to the analysis of data from proficiency testing schemes. If an individual is charged with statistical design and/or analysis, it is very important that this person has experience with interlaboratory comparisons, even if that person has an advanced degree in statistics. Conventional advanced statistical training often does not include exercises with interlaboratory comparisons, and the unique causes of measurement error that occur in proficiency testing can seem obscure. The guidance in this International Standard cannot provide all the necessary expertise to consider all applications, and cannot replace the experience gained by working with interlaboratory comparisons.

0.5 Computer software

Computer software that is needed for statistical analysis of proficiency testing data can vary greatly, ranging from simple spreadsheet arithmetic for small proficiency testing schemes using known reference values to sophisticated statistical software used for statistical methods reliant on iterative calculations or other advanced numerical methods. Most of the techniques in this International Standard can be accomplished by conventional spreadsheet applications, perhaps with customised routines for a particular scheme or analysis; some techniques will require computer applications that are freely available (at the time of publication of this Standard). In all cases, the users should verify the accuracy of their calculations, especially when special routines have been entered by the user. However, even when the techniques in this International Standard are appropriate and correctly implemented by adequate computer applications, they cannot be applied without attention from an individual with technical and statistical expertise that is sufficient to identify and investigate anomalies that can occur in any round of proficiency testing.
Statistical methods for use in proficiency testing by interlaboratory comparison

1 Scope

This International Standard provides detailed descriptions of statistical methods for proficiency testing providers to use to design proficiency testing schemes and to analyse the data obtained from those schemes. This Standard provides recommendations on the interpretation of proficiency testing data by participants in such schemes and by accreditation bodies.

The procedures in this Standard can be applied to demonstrate that the measurement results obtained by laboratories, inspection bodies, and individuals meet specified criteria for acceptable performance.

This Standard is applicable to proficiency testing where the results reported are either quantitative measurements or qualitative observations on test items.

NOTE The procedures in this Standard may also be applicable to the assessment of expert opinion where the opinions or judgments are reported in a form which may be compared objectively with an independent reference value or a consensus statistic. For example, when classifying proficiency test items into known categories by inspection - or in determining by inspection whether proficiency test items arise, or do not arise, from the same original source - and the classification results are compared objectively, the provisions of this Standard that relate to nominal (qualitative) properties may apply.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO Guide 30, Reference materials — Selected terms and definitions

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in probability

ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions

ISO/IEC 17043, Conformity assessment — General requirements for proficiency testing

ISO/IEC Guide 99, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3534-1, ISO 3534-2, ISO 5725-1, ISO/IEC 17043, ISO/IEC Guide 99, ISO Guide 30, and the following apply. In the case of differences between these references on the use of terms, definitions in ISO 3534 parts 1-2 apply. Mathematical symbols are listed in Annex A.

3.1 interlaboratory comparison

organization, performance and evaluation of measurements or tests on the same or similar items by two or more laboratories in accordance with predetermined conditions
3.2 proficiency testing
evaluation of participant performance against pre-established criteria by means of interlaboratory comparisons

Note 1 to entry: For the purposes of this International Standard, the term “proficiency testing” is taken in its widest sense and includes, but is not limited to:

— quantitative scheme — where the objective is to quantify one or more measurands for each proficiency test item;
— qualitative scheme — where the objective is to identify or describe one or more qualitative characteristics of the proficiency test item;
— sequential scheme — where one or more proficiency test items are distributed sequentially for testing or measurement and returned to the proficiency testing provider at intervals;
— simultaneous scheme — where proficiency test items are distributed for concurrent testing or measurement within a defined time period;
— single occasion exercise — where proficiency test items are provided on a single occasion;
— continuous scheme — where proficiency test items are provided at regular intervals;
— sampling — where samples are taken for subsequent analysis and the purpose of the proficiency testing scheme includes evaluation of the execution of sampling; and
— data interpretation — where sets of data or other information are furnished and the information is processed to provide an interpretation (or other outcome).

3.3 assigned value
value attributed to a particular property of a proficiency test item

3.4 standard deviation for proficiency assessment
measure of dispersion used in the evaluation of results of proficiency testing

Note 1 to entry: This can be interpreted as the population standard deviation of results from a hypothetical population of laboratories performing exactly in accordance with requirements.

Note 2 to entry: The standard deviation for proficiency assessment applies only to ratio and interval scale results.

Note 3 to entry: Not all proficiency testing schemes evaluate performance based on the dispersion of results.

[SOURCE: ISO/IEC 17043:2010, modified — In the definition “, based on the available information” has been deleted. Note 1 to the entry has been added, and Notes 2 and 3 have been slightly edited.]

3.5 measurement error
measured quantity value minus a reference quantity value

[SOURCE: ISO/IEC Guide 99:2007, modified — Notes have been deleted.]

3.6 maximum permissible error
extreme value of measurement error, with respect to a known reference quantity value, permitted by specifications or regulations for a given measurement, measuring instrument, or measuring system

[SOURCE: ISO/IEC Guide 99:2007, modified — Notes have been deleted.]
3.7 **z score**

standardized measure of performance, calculated using the participant result, assigned value and the standard deviation for proficiency assessment

Note 1 to entry: A common variation on the z score, sometimes denoted z’ (commonly pronounced z-prime), is formed by combining the uncertainty of the assigned value with the standard deviation for proficiency assessment before calculating the z score.

3.8 **zeta score**

standardized measure of performance, calculated using the participant result, assigned value and the combined standard uncertainties for the result and the assigned value

3.9 **proportion of allowed limit score**

standardized measure of performance, calculated using the participant result, assigned value and the criterion for measurement error in a proficiency test

Note 1 to entry: For single results, performance can be expressed as the deviation from the assigned value (D or $D\%$).

3.10 **action signal**

indication of a need for action arising from a proficiency test result

EXAMPLE A z score in excess of 2 is conventionally taken as an indication of a need to investigate possible causes; a z score in excess of 3 is conventionally taken as an action signal indicating a need for corrective action.

3.11 **consensus value**

value derived from a collection of results in an interlaboratory comparison

Note 1 to entry: The phrase ‘consensus value’ is typically used to describe estimates of location and dispersion derived from participant results in a proficiency test round, but may also be used to refer to values derived from results of a specified subset of such results or, for example, from a number of expert laboratories.

3.12 **outlier**

member of a set of values which is inconsistent with other members of that set

Note 1 to entry: An outlier can arise by chance from the expected population, originate from a different population, or be the result of an incorrect recording or other blunder.

Note 2 to entry: Many schemes use the term outlier to designate a result that generates an action signal. This is not the intended use of the term. While outliers will usually generate action signals, it is possible to have action signals from results that are not outliers.

[SOURCE: ISO 5725-1:1994, modified — The Notes to the entry have been added.]

3.13 **participant**

laboratory, organization, or individual that receives proficiency test items and submits results for review by the proficiency testing provider

3.14 **proficiency test item**

sample, product, artefact, reference material, piece of equipment, measurement standard, data set or other information used to assess participant performance in proficiency testing

Note 1 to entry: In most instances, proficiency test items meet the ISO Guide 30 definition of “reference material” (3.17).