Nanotechnologies — Vocabulary —
Part 2: Nano-objects
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Core terms related to particles</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms concerning particles and assemblies of particles</td>
<td>1</td>
</tr>
<tr>
<td>4 Terms specific to nano-objects</td>
<td>2</td>
</tr>
<tr>
<td>Annex A (informative) Particle size measurement</td>
<td>5</td>
</tr>
<tr>
<td>Annex B (informative) Agglomerates, aggregates, and constituent particles</td>
<td>8</td>
</tr>
<tr>
<td>Annex C (informative) Index</td>
<td>9</td>
</tr>
<tr>
<td>Bibliography</td>
<td>10</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committees responsible for this document are ISO/TC 229, Nanotechnologies and Technical Committee IEC/TC 113, Nanotechnology standardization for electrical and electronic products and systems. The draft was circulated for voting to the national bodies of both ISO and IEC.

This first edition of ISO/TS 80004-2 cancels and replaces ISO/TS 27687:2008, which has been technically revised.

Documents in the 80000 to 89999 range of reference numbers are developed by collaboration between ISO and IEC.

ISO/TS 80004 consists of the following parts, under the general title Nanotechnologies — Vocabulary:

— Part 1: Core terms
— Part 2: Nano-objects
— Part 3: Carbon nano-objects
— Part 4: Nanostructured materials
— Part 5: Nano/bio interface
— Part 6: Nano-object characterization
— Part 7: Diagnostics and therapeutics for healthcare
— Part 8: Nanomanufacturing processes

The following parts are under preparation:

— Part 9: Nano-enabled electrotechnical products and systems
— Part 10: Nano-enabled photonic components and systems
— Part 11: Nanolayer, nanocoating, nanofilm, and related terms
— Part 12: Quantum phenomena in nanotechnology
— Part 13: Graphene and other two-dimensional materials
Introduction

It is predicted that applications of nanotechnologies may pervade all areas of life. In the areas of communication, health, manufacturing, materials and knowledge-based technologies, there is a need to provide industry and research with standardized vocabulary and nomenclature to aid the responsible development and application of the technologies. It is also essential that regulators such as health and environmental protection agencies have reliable measurement systems supported by well-founded and robust standards.

Often in the field of nanotechnologies, naming of materials seen on microscopic images is inspired by the shape of objects found in everyday life, although the physical size is much smaller. The prefix nano- is often added to denote the small size of the object. (The prefix nano- is also used in SI units to indicate \(10^{-9}\) e.g. 1 nanometre = \(10^{-9}\) metre.). Thus, the term “nanoscale” (2.1) has been defined to denote the length interval approximately from 1 nm to 100 nm.

To create a unitary vocabulary, this part of ISO 80004 encompasses terms used concerning particles with nanoscale dimensions. The terms in this part of ISO 8004 form part of a larger hierarchy of terms under development for nanotechnologies. These terms are intended to facilitate communications between organizations and individuals in industry and those who interact with them.

Objects with one or more external dimensions in the nanoscale can have properties that make them key components of materials and systems resulting in improved performance over their conventional counterparts. These nano-objects (2.2) often have properties that are not simple extrapolations of the properties of their larger form, with these novel properties called emerging, discontinuous or transformative properties.

The size and shape of nano-objects are often intrinsic to their function, so the description and measurement of their size and shape are important and must be considered carefully. The three most basic shapes referred to in this part of ISO 8004 are illustrated in Figure 1. These three simple shapes represent the main classes of structural dimensionality to help categorize nano-objects. Some other common shapes are defined in this part of ISO 8004, but a large number of different shapes are possible.

A number of other parameters in addition to size and shape are also intrinsic to the function and phenomena exhibited by nano-objects. These parameters include composition, morphology, crystalline structure, and surface features, which can all have a major influence on the key nanoscale phenomena exhibited by nano-objects. Such phenomena include magnetic, optical, catalytic, electronic, and other properties.

A particular issue concerns nano-objects where one or more external dimensions are larger than the nanoscale. Potential confusion can occur when one of these dimensions greatly exceeds the nanoscale. For example, carbon nanotubes can have overall lengths in the millimetre range and are still nano-