Road vehicles — Vehicle-to-Grid Communication Interface —

Part 2: Network and application protocol requirements

Véhicules routiers — Interface de communication entre véhicule et réseau électrique —

Partie 2: Exigences du protocole d'application et du réseau
Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>3</td>
</tr>
<tr>
<td>4 Symbols and abbreviated terms</td>
<td>7</td>
</tr>
<tr>
<td>5 Conventions</td>
<td>8</td>
</tr>
<tr>
<td>5.1 Definition of OSI based services</td>
<td>8</td>
</tr>
<tr>
<td>5.2 Requirement structure</td>
<td>8</td>
</tr>
<tr>
<td>5.3 Usage of RFC references</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Notation used for XML schema diagrams</td>
<td>9</td>
</tr>
<tr>
<td>6 Document overview</td>
<td>9</td>
</tr>
<tr>
<td>7 Basic requirements for V2G communication</td>
<td>11</td>
</tr>
<tr>
<td>7.1 General information</td>
<td>11</td>
</tr>
<tr>
<td>7.2 Service primitive concept of OSI layered architecture</td>
<td>11</td>
</tr>
<tr>
<td>7.3 Security concept</td>
<td>12</td>
</tr>
<tr>
<td>7.4 V2G communication states and data link handling</td>
<td>21</td>
</tr>
<tr>
<td>7.5 Data Link Layer</td>
<td>26</td>
</tr>
<tr>
<td>7.6 Network Layer</td>
<td>26</td>
</tr>
<tr>
<td>7.7 Transport Layer</td>
<td>28</td>
</tr>
<tr>
<td>7.8 V2G Transfer Protocol</td>
<td>32</td>
</tr>
<tr>
<td>7.9 Presentation Layer</td>
<td>36</td>
</tr>
<tr>
<td>7.10 Application Layer</td>
<td>46</td>
</tr>
<tr>
<td>8 Application Layer messages</td>
<td>55</td>
</tr>
<tr>
<td>8.1 General information and definitions</td>
<td>55</td>
</tr>
<tr>
<td>8.2 Protocol handshake definition</td>
<td>56</td>
</tr>
<tr>
<td>8.3 V2G Message Definition</td>
<td>60</td>
</tr>
<tr>
<td>8.4 V2G Communication Session and BodyElement Definitions</td>
<td>62</td>
</tr>
<tr>
<td>8.5 Complex data types</td>
<td>104</td>
</tr>
<tr>
<td>8.6 Identification Modes and Message Set definitions</td>
<td>137</td>
</tr>
<tr>
<td>8.7 V2G communication timing</td>
<td>170</td>
</tr>
<tr>
<td>8.8 Message sequencing and error handling</td>
<td>184</td>
</tr>
<tr>
<td>8.9 Request-Response Message Sequence examples</td>
<td>206</td>
</tr>
<tr>
<td>Annex A (informative) Mapping of Part 1 use case elements</td>
<td>214</td>
</tr>
<tr>
<td>Annex B (informative) Mapping of ISO 15118 message element names to SAE J2847/2 terms</td>
<td>250</td>
</tr>
<tr>
<td>Annex C (normative) Schema definition</td>
<td>254</td>
</tr>
<tr>
<td>Annex D (informative) Message examples</td>
<td>278</td>
</tr>
<tr>
<td>Annex E (informative) Application of certificates</td>
<td>299</td>
</tr>
<tr>
<td>Annex F (normative) Certificate profiles</td>
<td>313</td>
</tr>
<tr>
<td>Annex G (informative) Encryption for the Distribution of Secret Keys</td>
<td>321</td>
</tr>
<tr>
<td>Annex H (normative) Specification of Identifiers</td>
<td>323</td>
</tr>
<tr>
<td>Annex I (informative) Message sequencing for renegotiation</td>
<td>326</td>
</tr>
<tr>
<td>Annex J (informative) Overview on XML Signatures</td>
<td>330</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 3, Electrical and electronic equipment.

ISO 15118-2 was developed in conjunction with IEC TC 69, Electric road vehicles and electric industrial trucks.

ISO 15118 consists of the following parts, under the general title Road vehicles — Vehicle-to-Grid Communication Interface:

- Part 1: General information and use-case definition
- Part 2: Network and application protocol requirements
- Part 3: Physical and data link layer requirements¹

¹ To be published.
Introduction

The pending energy crisis and necessity to reduce greenhouse gas emissions has led the vehicle manufacturers to a very significant effort to reduce the energy consumption of their vehicles. They are presently developing vehicles partly or completely propelled by electric energy. Those vehicles will reduce the dependency on oil, improve the global energy efficiency and reduce the total CO₂ emissions for road transportation if the electricity is produced from renewable sources. To charge the batteries of such vehicles, specific charging infra-structure is required.

Much of the standardization work on dimensional and electrical specifications of the charging infrastructure and the vehicle interface is already treated in the relevant ISO or IEC groups. However the question of information transfer between the EV and the EVSE has not been treated sufficiently.

Such communication is necessary for the optimization of energy resources and energy production systems so that vehicles can recharge in the most economical or most energy efficient way. It is also required to develop efficient and convenient billing systems in order to cover the resulting micro-payments. The necessary communication channel may serve in the future to contribute to the stabilization of the electrical grid as well as to support additional information services required to operate electric vehicles efficiently and economically.
Road vehicles — Vehicle-to-Grid Communication Interface — Part 2: Network and application protocol requirements

1 Scope

This part of ISO 15118 specifies the communication between battery electric vehicles (BEV) or plug-in hybrid electric vehicles (PHEV) and the Electric Vehicle Supply Equipment. The application layer message set defined in this part of ISO 15118 is designed to support the energy transfer from an EVSE to an EV. ISO 15118-1 contains additional use case elements (Part 1 Use Case Element IDs: F4 and F5) describing the bidirectional energy transfer. The implementation of these use cases requires enhancements of the application layer message set defined herein. The definitions of these additional requirements will be subject of the next revision of this International Standard.

The purpose of this part of ISO 15118 is to detail the communication between an EV (BEV or a PHEV) and an EVSE. Aspects are specified to detect a vehicle in a communication network and enable an Internet Protocol (IP) based communication between EVCC and SECC.

Key

1 Scope of ISO/IEC FDIS 15118-2:2013(E)
2 Message definition considers use cases defined for communication between SECC to SA

Figure 1 — Communication relationship among EVCC, SECC and secondary actor

This part of ISO 15118 defines messages, data model, XML/EXI based data representation format, usage of V2GTP, TLS, TCP and IPv6. In addition, it describes how data link layer services can be accessed from a layer 3 perspective. The Data Link Layer and Physical Layer functionality is described in ISO 15118-3.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: Country codes

ISO 15118-1, Road vehicles — Vehicle to grid communication interface — Part 1: General information and use-case definition

IEC 61851-1, Electric vehicle conductive charging system — Part 1: General requirements (Ed 2.0 2010)

IEC 61851-22, Electric vehicle conductive charging system - Part 22: AC electric vehicle charging station

IEC CDV 61851-23, Electric vehicle conductive charging system - Part 23: D.C. electric vehicle charging station (Ed 1.0 2012)

IEC 62196, Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles
ISO 15118-2:2014(E)

W3C EXI 1.0, Efficient XML Interchange (EXI) Format 1.0, W3C Recommendation (March 2011)
W3C XML Signature Syntax and Processing Version 1.1, - W3C Recommendation (April 2013)
IETF RFC 768, User Datagram Protocol (August 1980)
IETF RFC 6960, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP (June 2013)
IETF RFC 3122, Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification (June 2001)
IETF RFC 3484, Default Address Selection for Internet Protocol version 6 (IPv6) (February 2003)
IETF RFC 4291, IP Version 6 Addressing Architecture (February 2006)
IETF RFC 4429, Optimistic Duplicate Address Detection (DAD) for IPv6 (April 2006)
IETF RFC 4443, Internet Control Message Protocol (ICMP v6) for the Internet Protocol version 6 (IPv6) specification (March 2006)
IETF RFC 4861, Neighbor Discovery for IP version 6 (IPv6) (September 2007)
IETF RFC 4862, IPv6 Stateless Address Autoconfiguration (September 2007)
IETF RFC 5095, Deprecation of Type 0 Routing Headers in IPv6 (December 2007)
IETF RFC 5116, An Interface and Algorithms for Authenticated Encryption (January 2008)
IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF (January 2008)
IETF RFC 5289, TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM) (August 2008)
IETF RFC 5480, Elliptic Curve Cryptography Subject Public Key Information (March 2009)
IETF RFC 5722, Handling of Overlapping IPv6 Fragments (December 2009)
IETF RFC 6106, IPv6 Router Advertisement Options for DNS Configuration (November 2010)
IETF RFC 6961, The Transport Layer Security (TLS) Multiple Certificate Status Request Extension (June 2013)
3 Terms and definitions

For the purposes of this document, the terms in ISO 15118-1 and the following apply.

3.1 Basic Charging
BC charging phase during a charging session controlled by IEC 61851-1 only

3.2 charging limits
set of physical constraints (e.g. voltage, current, energy, power) that is negotiated during a V2G Communication Session for a charging session

3.3 Communication Setup Timer
Timer monitoring the time from plug-in until the Session Setup message

3.4 Contract Certificate
certificate issued to EVCC either by V2G Root CA or by Sub-CA, which is used in XML Signatures in application layer so that SECC or secondary actor can verify the Contract issued to the EVCC and signatures issued by the EVCC

3.5 CP State
Control Pilot (Vehicle) State according to IEC 61851-1 signalled on Control Pilot Line

3.6 credentials
anything that provides the basis for confidence, belief, credit, etc.

EXAMPLE Examples include certificates, passwords, user names etc.

3.7 Data Link Setup
setup phase for establishing the data link

Note 1 to entry: Entry Condition: Any valid control pilot signal according to IEC 61851-1; Exit Condition: D-LINK_READY.indication(DLINKSTATUS=LinkEstablished).

3.8 Distinguished Encoding Rules = ASN-1 encoding rule
DER method for encoding a data object, such as an X.509 certificate, to be digitally signed or to have its signature verified
3.9 **global address**
IP address with unlimited scope

3.10 **High Level Communication Charging**
HLC-C
charging phase during a charging session controlled by ISO 15118

3.11 **link-local address**
IP address with link-only scope that can be used to reach neighbouring interfaces attached to the same link

3.12 **Identification Mode**
mandatory and optional messages and parameters with respect to charging scenarios using External Identification Means (EIM) and charging scenarios using Plug and Charge (PnC) for identification

Note 1 to entry: An Identification Mode covers a set of similar charging scenarios for a specific identification means.

3.13 **(IP) address**
IP-layer identifier for an interface or a set of interfaces

3.14 **Maximum Transfer Unit**
MTU
maximum size (in bytes) of the largest protocol data unit that the Data Link Layer that can be pass onwards

3.15 **Message Set**
set of mandatory V2G messages and parameters for the EVCC or SECC covering one or multiple use case elements

3.16 **Message Timer**
Timer monitoring the exchange of a Request-Response-Pair

3.17 **network segment**
collection of devices that can exchange data on Data Link Layer level directly via Data Link Addresses

EXAMPLE Ethernet: all devices which can see each other via MAC addresses.

3.18 **node**
device that implements IPv6

3.19 **OEM Provisioning Certificate**
certificate issued to the EVCC, so that a Contract Certificate can be securely requested and received from a secondary actor

3.20 **Performance Time**
non-functional timing requirement defining the time a V2G Entity shall not exceed when executing or processing certain functionality

Note 1 to entry: This is a fixed time value.
3.21 private environment
area with (physical) access limited to a small number of vehicles (EVs), which may be a private parking
garage or a garage / parking lot of a company with its own EV fleet, where one or several private wall-box(es)
are used instead of public charging stations as EVSE, and where in order to keep the private wall-box simple
and cheap in production and operation it is allowed to stay offline permanently, which allows a private wall-box
to use leaf certificates with a longer maximum validity than allowed for public charging stations and using a
private root certificate which is different to the V2G root certificates and which has to be installed into each EV
that is allowed to charge within this specific private environment, resulting in a limited number of EVs
belonging to one private environment, the difference to a “trusted environment” being that in a (pure; i.e. not
additionally “trusted”) private environment TLS and the corresponding data encryption at connection level is
always used, and solely certificate handling is simplified for the private wall-box (EVSE) since it may stay
offline permanently, resulting in unrestricted certificate validity periods, shorter certificate chain length, omitting
OCSP, and an additional “pairing mode”

3.22 Identification Mode
group of mandatory and optional Message Sets covering a set of similar charging scenarios for a specific
identification means

3.23 renegotiation
messaging for updating the agreement on the charging schedule between EV and EVSE during a V2G
Communication Session by retransmitting the parameters SASchedule and ChargingProfile

3.24 Request-Response Message Pair
request message and the corresponding response message

3.25 Request-Response Message Sequence
predefined sequence of Request-Response Message Pairs

3.26 SDP Client
V2G Entity that uses the SDP server to get configuration information about the SECC to be able to access the
SECC

3.27 SDP Server
V2G Entity providing configuration information for accessing the SECC

3.28 SECC Certificate
certificate issued to SECC either by V2G Root CA or by Sub-CA, which is used in TLS so that the EVCC can
verify the authenticity of the SECC

3.29 Sequence Timer
Timer monitoring a Request-Response Message Sequence

3.30 Sub-CA
subordinate certificate authority who issues SECC Certificates and/or Contract Certificates on behalf of the
V2G Root CA

Note 1 to entry: The ability of issuing the certificates are delegated from V2G Root CA, and V2G Root CA can revoke the
Sub-CA at any time.
3.31 **Sub-CA Certificate**

Certificate issued to Sub-CA

3.32 **TCP_DATA**

Socket/interface for data transfer based on TCP connection

3.33 **Timeout**

Timing requirement defining the time a V2G Entity monitors the communication system for a certain event to occur.

Note 1 to entry: If the specified time is exceeded the respective V2G Entity initiates the related error handling. This is a fixed time value.

3.34 **Timer**

Device or piece of software used in an implementation for measuring time.

Note 1 to entry: Depending on the specific use case a timer is used to trigger certain system events as well.

3.35 **Trusted Environment**

Closed user group (e.g., members of car sharing system) with some pre-distributed token for access to the SECC charging service (e.g., key to home garage, RFID token for car sharing), which is something where a person or instance is responsible for, for example (not limited to) a person with its home garage, a car sharing operator or a taxi operator.

3.36 **V2G Charging Loop**

V2G messaging phase for controlling the charging process by ISO 15118.

3.37 **V2G Communication Session**

Association of two specific V2G Entities for exchanging V2G messages.

3.38 **V2G Entity**

Primary actor participating in the V2G communication using a mandatory or optional transmission protocol defined by ISO 15118-2.

3.39 **V2G Message**

Message exchanged on application layer.

Note 1 to entry: Refer to Clause 8 Application Layer messages.

3.40 **V2G Setup**

Setup phase for V2G messaging.

Note 1 to entry: Entry Condition: D-LINK READY.indication(DLINKSTATUS=LinkEstablished); Exit Condition: PowerDeliveryReq with ChargeProgress equals Start or Stop.

3.41 **V2G Transfer Protocol**

Communication protocol to transfer V2G messages between two V2GTP entities.
3.42
V2GTP Entity
V2G Entity supporting the V2G Transfer Protocol

3.43
V2G Root CA
certificate Authority (CA) who issues Contract Certificates and/or SECC Certificates, or who delegates ability to issue such Certificates to Sub-CA

3.44
V2G Root Certificate
certificate issued to V2G Root CA

4 Symbols and abbreviated terms
For the purposes of this document, the following abbreviated terms apply:

BEV Battery Electric Vehicle
CA Certificate Authority
CRL Certificate Revocation List
DH Diffie Hellman
DER Distinguished Encoding Rules
ECDSA Elliptic Curve Digital Signature Algorithm
EMAIR E-Mobility Account Identifier
EMOCH E-Mobility Operator Clearing House (see also 15118-1, [12])
EV Electric Vehicle
EVCC Electric Vehicle Communication Controller
EVSE Electric Vehicle Supply Equipment
EXI Efficient XML Interchange
OCSP Online Certificate Status Protocol
OEM Original Equipment Manufacturer
NACK Negative Acknowledgement
PDU Protocol Data Unit
PHEV Plug-in Hybrid Electric Vehicle
PKI Public Key Infrastructure
PLC Power Line Communication
PnP Plug and Charge
SA secondary actor
ISO 15118-2:2014(E)

SDP
SECC Discovery Protocol

SDU
Service Data Unit

SECC
Supply Equipment Communication Controller

TCP
Transmission Control Protocol

V2G
Vehicle to Grid Communication

V2G CI
Vehicle-to-Grid Communication Interface

V2GTP
V2G Transfer Protocol

UDP
User Datagram Protocol

XML
Extensible Markup Language

5 Conventions

5.1 Definition of OSI based services

ISO 15118-2 is based on the conventions discussed in the OSI Service Conventions (refer to ISO 10731) as they apply for the individual layers specified in this document.

This part of ISO 15118-2 describes requirements applicable to layer 3-7 according to the OSI layered architecture.

5.2 Requirement structure

This document uses a requirement structure i.e. a unique number identifies each individual requirement included in this document. This requirement structure allows for easier requirement tracking and test case specification. The following format is used:

"[V2G"Y"-"XXX"]" requirement text Where:

— "V2G" represents the ISO 15118 set of standards,
— Y represents the document part of the ISO 15118 document set
— XXX represents the individual requirement number and
— "requirement text" includes the actual text of the requirement.

EXAMPLE [V2G2-000] This shall be an example requirement.

5.3 Usage of RFC references

When RFCs are referenced all “shall/ shall not” requirements are mandatory.

[V2G2-001] In this document, if a referenced RFC has been updated by one or several RFC, the update is fully applicable.

[V2G2-002] If an update or part of an update applicable to an RFC referenced herein is not compatible with the original RFC or the implementation described by this standard the update shall not apply.

[V2G2-003] All published Errata, for the ISO 15118 referenced RFCs, are fully applicable in this standard.
5.4 Notation used for XML schema diagrams

This standard makes use of XML as a description format for V2G messages. For details with regards to the XML schema diagram notation used in this document refer to Altova XMLSpy Manual.

Allowing for an easy way to distinguish the types used for the XML schema definitions in this standard following naming conventions apply:

— complex type use capitalized first letters
— simple types use non capitalized first letters

6 Document overview

Figure 2 describes the organization of the different ISO 15118 documents and the usage of the subclauses, according to the OSI layered architecture.

As indicated by the bold framed shapes this Part of ISO 15118 defines requirements applicable to layers 3-7 according to the OSI layered architecture. Layer 1 and 2 requirements including the V2G Standardized Service Primitive Interface are specified in Part 3 of this standard.
Figure 2 — Vehicle to Grid Communication document overview
7 Basic requirements for V2G communication

7.1 General information

This Part of ISO 15118 describes the realization of the V2G use cases elements defined by Part 1 of this standard.

7.2 Service primitive concept of OSI layered architecture

7.2.1 Overview

This subclause explains how the OSI layered architecture is applied for the purpose of this document. It is intended to provide simple means for describing the interfaces between the individual communication protocol layers required by this document and furthermore allows for defining timing requirements more precisely.

Services are specified by describing the service primitives and parameters that characterize a service. This is an abstract definition of services and does not force a particular implementation.

Figure 3 depicts a simplified view of OSI layer interaction sufficient to understand the OSI layered architecture principles for the context of this document.

Key

PDUx: Protocol Data Unit of network entity x
PCI: Protocol Control Information
SDUx: Service Data Unit of network entity x

Figure 3 — OSI layered architecture principles

When a layer i+1 instance of V2G Entity m exchanges data with a layer i+1 instance of V2G Entity m+1 each instance uses services of an instance of layer i. A service is defined as a set of service primitives.
7.2.2 Syntax of service primitives

Service primitives are described with the following syntax:

[Initial of layer]-[NAME].[primitive type](parameter list)

— whereas [initial of layer] is one out of the following seven:
 [Physical, Data Link, Network, Transport, Session, Presentation, Application]

— whereas [NAME] is the name of the primitive

EXAMPLE Typical examples for [Name] are CONNECT, DISCONNECT, DATA; other names are used in this Part and Part 3 of this standard.

— whereas [primitive type] is one out of the following four:
 [request, indication, response, confirmation]

— whereas (parameter list) includes a list of parameters separated by comma the user of the service is supposed to provide when using the respective service primitive; optional parameters are marked with brackets "[..]."

NOTE In this document, the primitive type ".indication" always indicates an event asynchronously to the upper layer.

7.3 Security concept

7.3.1 Call Flows (Flow Charts)

The following two figures (Figure 4 and Figure 5) depict the principal approach for the semi-online and the online case from a security point of view, showing the necessary security services applied as well as an abstract view on the different data necessary for the operation.

The full data flow / sequence charts can be found in subclause 8.8 of this document. In these overview figures only the security relevant information shall be highlighted.

The security concept provides a basic transport based protection mechanism. For certain scenarios, the usage of Transport Layer Security (TLS) for the transport communication between EVCC and SECC is mandated. For some other scenarios, the usage of TLS is optional. Specific messages are protected on application layer (XML-messages), if data has to be protected on the way from or to a secondary actor, or if the protection has to last longer than the existence of the TLS channel. Also the concept is independent from any further protection mechanisms on lower levels than layer 3 in the OSI layer model.

Figure 4 shows an example use case for a semi-online connection for a Plug and Charge scenario:

In this Plug-and-Charge example, all TCP/IP based communication is protected using a unilaterally authenticated TLS channel between the two peers. (Note: TLS is not mandatory for certain Identification Modes other than the Plug-and-Charge Identification Mode). All communication is terminated at the SECC. The meter reading is cyclically signed by the vehicle to support the billing process (refer to 8.4.3.13.1). This information may be used for billing if local regulations permit it. The EVSE provides the charging records, containing the signed meter reading to the backend for further processing.

NOTE 1 The communication between SECC and SA in Figure 4 is shown for informational purpose only and not intended to specify a particular message sequence.
Figure 4 — Example for semi-online communication (1 of 2)