Soil quality — Assessment of genotoxic effects on higher plants — *Vicia faba* micronucleus test

Qualité du sol — Évaluation des effets génotoxiques sur les végétaux supérieurs — Essai des micronoyaux sur Vicia faba
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative reference</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Principle</td>
<td>2</td>
</tr>
<tr>
<td>5 Plants, test equipment and reagents</td>
<td>2</td>
</tr>
<tr>
<td>5.1 Equipment</td>
<td>2</td>
</tr>
<tr>
<td>5.2 Test organism</td>
<td>2</td>
</tr>
<tr>
<td>5.3 Reference substance</td>
<td>2</td>
</tr>
<tr>
<td>5.4 Reagents</td>
<td>3</td>
</tr>
<tr>
<td>6 Protocols</td>
<td>3</td>
</tr>
<tr>
<td>6.1 Preparation of the soil to be tested</td>
<td>3</td>
</tr>
<tr>
<td>6.2 Preparation of the seeds</td>
<td>4</td>
</tr>
<tr>
<td>6.3 Conducting of the test</td>
<td>5</td>
</tr>
<tr>
<td>6.4 Test environment</td>
<td>6</td>
</tr>
<tr>
<td>6.5 Cell preparation</td>
<td>6</td>
</tr>
<tr>
<td>7 Assessment of the results</td>
<td>8</td>
</tr>
<tr>
<td>7.1 Presentation of the data</td>
<td>8</td>
</tr>
<tr>
<td>7.2 Statistical analysis</td>
<td>8</td>
</tr>
<tr>
<td>7.3 Interpretation of the results</td>
<td>8</td>
</tr>
<tr>
<td>8 Validity criteria</td>
<td>8</td>
</tr>
<tr>
<td>9 Test report</td>
<td>8</td>
</tr>
<tr>
<td>Annex A (informative) Composition of Hoagland’s medium</td>
<td>10</td>
</tr>
<tr>
<td>Annex B (informative) Testing chemicals added to soils</td>
<td>11</td>
</tr>
<tr>
<td>Annex C (informative) Results of the interlaboratory test conducted within the framework of NF T 90-327</td>
<td>12</td>
</tr>
<tr>
<td>Annex D (informative) Results of the interlaboratory test conducted on the reference substance and an industrial contaminated soil</td>
<td>14</td>
</tr>
<tr>
<td>Bibliography</td>
<td>18</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 190, Soil quality, Subcommittee SC 4, Biological methods.
Introduction

In the field of assessment of the quality of soils and soil materials, it appears necessary to determine \emph{in vivo} their genotoxic potential which may be induced by pollution or by a decontamination process. Indeed, genotoxic agents have the ability to damage the genome of living organisms or to interfere with its functioning, but they are not always detected by chemical analysis or classical ecotoxicological tests. Actually, genotoxic effects are often observed at sublethal concentrations, where no toxic effect (e.g. survival or growth) can be observed in the short term but some long term effects may be feared in living organisms. Moreover, higher plants, like \textit{Vicia faba} (broad bean) are ecologically relevant to assess soils and soil materials quality.
Soil quality — Assessment of genotoxic effects on higher plants — *Vicia faba* micronucleus test

1 Scope

The purpose of this International Standard is to describe a method for assessing genotoxic effects (chromosome breakage or dysfunction of the mitotic spindle) of soils or soil materials on the secondary roots of a higher plant: *Vicia faba* (broad bean). This method allows the assessment of genotoxicity (toxicity for genetic material) of soils and soil materials like compost, sludge, waste, fertilizing matters, etc. Two ways of exposure can be considered: a direct exposure of plants to the soil (or soil material) which is relevant for the real genotoxic potential and an exposure of plants to the water extract of the soil (or soil material). This last way of exposure to a leachate or an eluate allows the detection of the mutagens which are not adsorbed to soils and which may be transferred to aquatic compartments. Moreover, this test may be used to evaluate genotoxic effects of chemical substances and to waters, effluents, etc.

2 Normative reference

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10381-6, *Soil quality — Sampling — Part 6: Guidance on the collection, handling and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory*

ISO 10390, *Soil quality — Determination of pH*

ISO 10694, *Soil quality — Determination of organic and total carbon after dry combustion (elementary analysis)*

ISO 11260, *Soil quality — Determination of effective cation exchange capacity and base saturation level using barium chloride solution*

ISO 11465, *Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method*

ISO/TS 21268-1, *Soil quality — Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials — Part 1: Batch test using a liquid to solid ratio of 2 l/kg dry matter*

ISO/TS 21268-2, *Soil quality — Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials — Part 2: Batch test using a liquid to solid ratio of 10 l/kg dry matter*

EN 14735, *Characterization of waste — Preparation of waste samples for ecotoxicity tests*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 control soil

uncontaminated substrate used as control and dilution medium for preparing dilution series with test soils or test materials

EXAMPLE compost, sludge, waste, chemicals
3.2 **mitotic index**
number of cells in division per 1 000 cells observed when all of the stages of the mitosis are taken into account, from the prophase (when the chromosomes begin to condense) up to the telophase (when the chromatin of the two nuclei formed at each pole of the cell finishes decondensing).

3.3 **test mixture**
mixture of test material (soil, compost, sludge, waste or chemical) with control soil

4 **Principle**
This genotoxicity test is based on the detection of micronuclei in the cells of the secondary root tips of *Vicia faba* (broad bean). The micronuclei, visible in the cytoplasm of the cells, result from a chromosome break (effect of clastogenic substances) or from a dysfunction of the mitotic spindle (effect of aneugens).

In both cases, the fragments of chromosomes or the entire chromosomes cannot migrate to one of the poles of the spindle at the time of the anaphase of the mitotic division and therefore form one (or more) micronucleus.

The micronucleus frequency is determined in the control root cells and in those which have been exposed to the soil (or soil material) or the water extract of the soil being tested. A statistical test then enables to determine the significativeness of data.

5 **Plants, test equipment and reagents**

5.1 **Equipment**
The exposure of the plants to the soils and soil materials under test is performed in plastic pots (diameter: 9 cm, height: 10 cm).

Exposure to water extract of soils is carried out in glass containers (e.g. glass beaker of capacity 200 ml).

A microscope equipped with an objective with x 400 magnification is required for studying the microscopic effects of the cells.

5.2 **Test organism**
The plant selected for its high sensitivity to micropollutants and for its ease of obtention is *Vicia faba* (broad bean), Aguadulce, with a very long pod. This higher plant forms part of the family of pulses and of the dicotyledoneae class.

Seeds coated with insecticides and/or fungicides should not be used.

5.3 **Reference substance**
Maleic hydrazide is recommended as a reference substance. The positive control is carried out at the concentration of 10^{-5} M, 1,12 mg/kg and 1,12 mg/l for solid-phase and liquid-phase exposures respectively.

The preparation of this photodegradable substance as well as the exposure of the plant organisms to the solution shall be carried out in the dark.
5.4 Reagents

5.4.1 Carnoy’s solution

Carnoy’s solution is composed of glacial acetic acid and of ethanol in respective volume proportions of 25 % and 75 % and shall be prepared extemporaneously.

5.4.2 Hydrolysis solution

A solution of HCl with concentration 1 mol/l enables to conduct the hydrolysis of the roots.

5.4.3 Staining solution

The staining solution used for specifically highlighting the DNA is 1 % orcein diluted in 45 % acetic acid. This mixture is brought to the boil during 10 min, then filtered after cooling down. When it is used, it is important to filter the staining solution after each use in order to prevent the forming of orcein crystals which could be confused with micronuclei during the microscopic examination of the cells.

NOTE Other specific DNA staining solution can be used.

5.4.4 Hoagland’s medium

Nutritive medium of which the composition is given in Annex A.

5.4.5 Intermediate solvent

Dimethyl sulfoxide (DMSO), at a maximal concentration of 1 %.

NOTE Any other appropriate water-miscible solvent whose genotoxic innocuousness has been previously established may be used.

6 Protocols

6.1 Preparation of the soil to be tested

6.1.1 Chemical substances

Chemical substances may be tested: their preparation is explained in Annex B.

6.1.2 Soils and soil materials

Whatever the soil to be tested (sampled from a contaminated site or from a remediated soil, or other soil materials like compost, sludge, waste, fertilizing matters, etc.), it should have pH values after sieving within a range that is not toxic to *Vicia faba*. Soils under test should be sieved by 4 mm mesh and thoroughly mixed and should be stored as shortly as possible, in the dark at 4 °C ± 2 °C in accordance with ISO 10381-6 using containers that minimise losses of soil contaminants by volatilisation and sorption to the container walls. Soil pH should not be corrected.

For each soil to be tested, the following characteristics should be determined:

— Soil texture classification,
— pH in accordance with ISO 10390,
— Water content in accordance with ISO 11465,
— Water holding capacity according to Annex B of ISO 11269-2:2012,
— Cationic exchange capacity in accordance with ISO 11260,
— Organic matter content in accordance with ISO 10694.

The soil mixtures are placed in plastic pots with a moisture content of 70 % of water-holding capacity.

6.1.3 Control soil

Either reference or standard natural soils can be used as control soil, e.g. LUFA soils\(^1\) previously air dried at room temperature, sieved between 2 mm and 5 mm, with clay (< 2µm) content < 25 %, silt (2 µm -50 µm) content < 45 %, soil organic matter content between 1.5 % and 5 %, pH\(_{\text{water}}\) between 5 and 8.

When comparing soils of known and unknown quality, the control soil and soil under test should be of the same textural class, and be as similar as practicable in all respects other than the presence of the chemical or contaminant being investigated. Indeed, significant differences in soil characteristics other than the presence of contaminants may lead to differences in plant cell division, so in micronucleus frequency and may induce false positive test results.

NOTE Although mitotic index is not modified by pH between 4 and 9, it is recommended to use a control soil with a pH\(_{\text{water}}\) between 5 and 8 for a better genotoxicity assessment of chemicals.

6.1.4 Water extracts of soil

Water extracts of soils or soil materials are prepared, as rapidly as possible after receipt of the sample at the laboratory, with a leaching test according to one of the protocols described in ISO/TS 21268-1 or ISO/TS 21268-2 or EN 14735. However, the eluates obtained shall not be filtered but can be decanted during 2 h. In this case, the supernatant phase is sampled and stored in the dark at a temperature of 4 °C ± 3 °C up until the test is carried out which shall take place at the maximum 24 h after the leaching stage. The Hoagland’s medium is used for the negative control and to prepare the dilutions of the water extract.

6.2 Preparation of the seeds

Seeds (approximately three times higher than the required number) are selected from the stock of seeds stored at 4 °C in the dark. Then a germination step is necessary to obtain secondary roots: the seeds are cleaned with demineralised water and immersed during a period between 6 h and 24 h at ambient temperature in demineralised water in order to hydrate them. The seed coats are then removed and the seeds are left to germinate vertically at 24 °C ± 1 °C in continually humidified cotton (not having undergone any chlorinated treatment) in the dark.

NOTE Other germination material may be used: vermiculite, peat, etc.

After about three days, only those seeds whose primary root length is between 3 cm and 5 cm are selected. Their tip (around 5 mm) is then cut off in order to interrupt the growth of this main root and to stimulate that of the secondary roots.

For solid phase exposure, the primary rooted seeds are directly placed in soils for beginning the exposure of secondary roots.

For liquid phase exposure, the seeds are then placed, so as to immerse only the root, over a container containing some nutritive medium (Hoagland’s medium (5.4.4)) at a temperature of 24 °C ± 1 °C in order to induce the secondary roots sprouting. This previously oxygenated medium is renewed every 24h. The secondary roots of the seeds reach a length of 1 cm to 2 cm after a period of four days; the seeds bearing these secondary roots are then used for the purpose of the test.

This germination step of the *Vicia faba* seeds, necessary in both ways of exposure, can be started four days and eight days respectively for solid-phase and liquid-phase exposure before beginning the test.

1) LUFA soils are an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.
6.3 Conducting of the test

6.3.1 Soils and soil materials

The dilutions of the test mixture are chosen within a geometric series with a factor not exceeding two and shall cover a large range of concentrations (e.g. from 0.01 % to 100 %). These mixtures are prepared by diluting the soil with a reference soil.

Each test shall include a negative control without any test sample and a positive control (see 5.3).

The direct exposure of the plant organisms to the different concentrations of the soil is performed by placing the germinated seeds (at least three per dilution) in a plastic pot containing 200 g of the tested soil and/or mixtures (see Figure 1) throughout the exposure time between three and five days, according to obtain at least ten roots of 1 cm length.

![Figure 1 — Method of direct exposure of the \textit{Vicia faba} seeds](image)

6.3.2 Water extracts of soil

The concentrations of the sample under test are chosen within a geometric series with a factor not exceeding two and shall cover a large range of concentrations (e.g. from 0.01 % to 100 % for matrices). This range of concentrations is prepared by diluting the sample with the previously oxygenated Hoagland's medium (see Annex A).

Each test shall include a negative control without any test sample and a positive control (see 5.3).

At the time of the test, the different solutions to be tested are extemporaneously brought up to a temperature of 24 °C ± 1 °C and well homogenised before exposure of plant organisms. This is carried out by placing the germinated seeds (at least three per concentration) in a glass container having a sufficient diameter in order to prevent, as far as possible, contact between the root tips and the container wall throughout the exposure time. The roots are immersed in a minimum volume of 200 ml of test solution (see Figure 2).