Information and documentation — Thesauri and interoperability with other vocabularies —

Part 2: Interoperability with other vocabularies
Contents

Foreword ... v
Introduction.. vi
1 Scope ... 1
2 Normative references ... 1
3 Terms and definitions ... 1
4 Symbols, abbreviations and other conventions ... 15
5 Objectives and identification ... 16
5.1 Objectives of interoperability and mapping ... 16
5.2 Identifying the elements to be mapped ... 16
6 Structural models for mapping across vocabularies ... 16
6.1 General .. 16
6.2 Model 1: Structural unity ... 17
6.3 Model 2: Direct-linked ... 17
6.4 Model 3: Hub structure .. 17
6.5 Selective mapping .. 19
6.6 Choosing among the options .. 20
7 Types of mapping ... 20
7.1 General .. 20
8 Equivalence mappings ... 21
8.1 General .. 21
8.2 Simple equivalence ... 21
8.3 Compound equivalence .. 22
9 Hierarchical mappings ... 25
10 Associative mappings ... 25
11 Exact, inexact and partial equivalence ... 26
11.1 General .. 26
11.2 Exact equivalence .. 26
11.3 Inexact equivalence ... 27
11.4 Partial equivalence ... 27
12 Use of mappings in information retrieval ... 28
12.1 General .. 28
12.2 Human mediation ... 28
12.3 Examples of mapping implementation ... 29
12.4 Conclusions and recommendations ... 30
13 Handling pre-coordination ... 31
13.1 General .. 31
13.2 Mapping between a thesaurus and a scheme with context-dependent captions 32
13.3 Mapping more complex classes ... 37
14 Techniques for identifying candidate mappings ... 38
14.1 General procedure ... 38
14.2 Computer assisted direct matching ... 40
14.3 Co-occurrence mapping ... 40
14.4 Other methods ... 40
15 Managing the data ... 41
15.1 Types of data to be recorded .. 41
15.2 Storing the data ... 43
15.3 Maintaining the mappings data ... 43
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 25964-2 was prepared by Technical Committee ISO/TC 46, Information and documentation, Subcommittee SC 9, Identification and description.

ISO 25964 consists of the following parts, under the general title Information and documentation — Thesauri and interoperability with other vocabularies:

— Part 1: Thesauri for information retrieval
— Part 2: Interoperability with other vocabularies

ISO 25964-1 covers the development and maintenance of thesauri, both monolingual and multilingual, including formats and protocols for data exchange.

This part of ISO 25964 covers interoperability between different thesauri and with other types of structured vocabulary.

ISO 25964 covers development and maintenance of thesauri rather than how to use them in indexing, which is covered by ISO 999.
Introduction

The ability to identify and locate relevant information among vast collections and other resources is a major and pressing challenge today, hence the need for semantic interoperability. To support this need, a variety of web services and other tools are under active development, including (but not limited to):

- registries of vocabularies and metadata schemas,
- repositories of vocabularies and metadata schemas, and
- crosswalk services.

While registries and repositories are outside the scope, this International Standard provides guidance fundamental to the establishment of crosswalk services. Typically these rely on mapping between different schemas and vocabularies. Accordingly, inter-vocabulary mapping will be the principal focus of this part of ISO 25964.

The foundation for discussion of interoperability is laid in ISO 25964-1, which describes the key characteristics of thesauri and provides guidance on best practice. Unfortunately, however, a comparable International Standard does not exist for the other types of vocabulary with which a thesaurus needs to interoperate. For this reason, this second part of ISO 25964 provides some elementary description of other vocabularies such as classification schemes, subject heading schemes, etc., before making recommendations on mapping between these and thesauri. It does not provide guidance on the construction of vocabularies other than thesauri.

Clauses 1 to 12 and Clauses 14 to 16 of this part of ISO 25964 deal with the principles and practicalities of interoperability, especially mapping, that apply to most vocabularies and especially thesauri. Clause 13 provides additional guidance for handling the pre-coordinated classes that occur in classification schemes and other vocabularies using the classification approach.

Clauses 17 to 24 are each dedicated to a different type of vocabulary. First priority is given to vocabularies that are commonly used for classifying or indexing resources, namely classification schemes (including those used for records management), taxonomies, subject heading schemes and name authority lists. Notwithstanding their different purposes, terminologies, ontologies and synonym rings are also included. Each clause provides a brief informative description of the vocabulary's key characteristics, contrasting its semantic components with those of a thesaurus, so as to provide context for the interoperability requirements and recommendations that follow.
Information and documentation — Thesauri and interoperability with other vocabularies —

Part 2: Interoperability with other vocabularies

1 Scope

This part of ISO 25964 is applicable to thesauri and other types of vocabulary that are commonly used for information retrieval. It describes, compares and contrasts the elements and features of these vocabularies that are implicated when interoperability is needed. It gives recommendations for the establishment and maintenance of mappings between multiple thesauri, or between thesauri and other types of vocabularies.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 25964-1:2011, Information and documentation — Thesauri and interoperability with other vocabularies — Part 1: Thesauri for information retrieval

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 array
group of sibling concepts (3.17)

EXAMPLE

In the following, the sibling concepts outerwear and underwear form an array within the concept clothing.

<table>
<thead>
<tr>
<th>clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>outerwear</td>
</tr>
<tr>
<td>overcoats</td>
</tr>
<tr>
<td>underwear</td>
</tr>
</tbody>
</table>

3.2 associative relationship
relationship between a pair of concepts (3.17) that are not related hierarchically but share a strong semantic connection
3.3 broader term
preferred term (3.62) representing a concept (3.17) that is broader than the one in question

NOTE The scope of the narrower concept falls completely within the scope of the broader. The relationship between the two is commonly indicated with the tag BT. For more explanation see ISO 25964-1:2011, 10.2.1.

3.4 caption
text label of the class (3.10) represented by a notation (3.54) in a classification scheme (3.12)

NOTE A caption is read in conjunction with its hierarchical context. It does not need to be as complete or as self-contained as a scope note or even a preferred term in a thesaurus. Captions are sometimes known as class headings or class names.

3.5 category
concept (3.17) or group of similar or related concepts (3.17) used as a division or subdivision in a taxonomy (3.83)

NOTE 1 In a classification scheme, such a group is normally called a class.

NOTE 2 This definition of category should not be confused with “fundamental categories”, discussed in ISO 25964-1:2011 (for example in Clause 12) in the context of faceted classification.

3.6 category label
text label representing a category (3.5) in a taxonomy (3.83)

NOTE The category label in a taxonomy is comparable to the caption in a classification scheme, and although a category is often referred to as a node, a category label should not be confused with a node label.

3.7 chain index
index to a scheme that represents compound concepts (3.17) by a string of pre-coordinated (3.60) terms (3.84), such as a classification scheme (3.12), in which entries are generated by successive left truncation of strings of terms (3.84) representing complex concepts (3.17)

NOTE See the example in 17.2.4, Figure 12.

3.8 characteristic of division
attribute by which a concept (3.17) can be subdivided into an array (3.1) of narrower concepts (3.17) each having a distinct value of that attribute

cf. node label (3.52)

EXAMPLE

| In the following, age group is the characteristic of division applied to the concept of people. |
| people |
| (people by age group) |
| children |
| youths |
| adults |

3.9 citation order
order in which preferred terms (3.62) or notations (3.54) are combined in a pre-coordinate (3.60) indexing (3.36) system or a classification scheme (3.12) to form strings representing complex concepts (3.17)
3.10
class
(concept (3.17) or group of similar or related *concepts* (3.17) used as a division or subdivision in a *classification scheme* (3.12))

NOTE
Classes are the basic units of which a classification scheme is constructed. In a taxonomy, although this is a type of classification scheme, they are generally known as categories (see 3.5). Occasionally they are described as "nodes", although they should not be confused with node labels. The term "class" has a different meaning in the context of ontologies. See 21.2.2.

3.11
classification
classifying
avtivity involving the components of grouping similar or related things together, separating dissimilar or unrelated things, and arranging the resulting *classes* (3.10) in a logical and helpful sequence

3.12
classification scheme
schedule (3.67) of *concepts* (3.17) and pre-coordinated (3.60) combinations of *concepts* (3.17), arranged by *classification* (3.11)

NOTE
A classification scheme often also includes an index.

3.13
collection
set of information resources that can or could be accessed by a *structured vocabulary* (3.74), whether the items in the set are collected in one place or distributed over a network

3.14
compound equivalence
relationship between *terms* (3.84) or *mapping* (3.41) between *concepts* (3.17) in which one *term* (3.84) or *concept* (3.17) in one context is represented by two or more *terms* (3.84) or *concepts* (3.17) in another

3.15
compound heading
pre-coordinated heading
subject heading (3.76) formed by pre-coordination (3.60) of more than one *term* (3.84) into a string

EXAMPLE

The single terms Buddhism, Mass media and Religious aspects may be combined to form the compound heading Mass media — Religious aspects — Buddhism.

3.16
compound term
term (3.84) that can be split morphologically into separate components

EXAMPLES

In English:
"copper mines" can be split into "copper" and "mines"
"lawnmowers" can be split into "lawns" and "mowers"

In French:
"mine de cuivre" can be split into "mine" and "cuivre"
"biodiversité" can be split into "biologie" and "diversité"

NOTE
Compound terms can be multi-word terms, or can consist of only one word.
3.17 concept
unit of thought

NOTE Concepts can be expressed in a variety of different ways. They exist in the mind as abstract entities independent of terms used to express them. They range from the very simple, e.g. “child”, to the very complex, e.g. “child protection legislation”.

3.18 concept group
group of concepts (3.17) selected by some specified criterion, such as relevance to a particular subject area

3.19 controlled vocabulary
prescribed list of terms (3.84), headings or codes, each representing a concept (3.17)

NOTE Controlled vocabularies are designed for applications in which it is useful to identify each concept with one consistent label, for example when classifying documents, indexing them and/or searching them. Thesauri, subject heading schemes and name authority lists are examples of controlled vocabularies.

cf. terminology (3.85)

3.20 cross-language equivalence
equivalence relationship (3.28) between terms (3.84) representing the same concept (3.17) in different languages

3.21 crosswalk
table of mappings (3.41) between the concepts (3.17) in two or more structured vocabularies (3.74)

NOTE Crosswalks support the ability of search engines to search effectively across heterogeneous databases.

3.22 data model
abstract model that describes how data is represented and used

NOTE The data model in ISO 25964-1 provides a generic definition of thesaurus structure and semantics. It can be used as the basis for defining a database model or an exchange format for thesauri.

3.23 differentiated mapping
mapping (3.40) methodology that aims to distinguish between different types and qualities of mapping (3.41)

NOTE Types of mapping that can be distinguished include equivalence, associative and hierarchical; equivalence can be further subdivided into simple or compound, and the degree of equivalence can be marked to support further distinctions at the time of use.

cf. undifferentiated mapping (3.88)

3.24 document
any resource that can be classified (3.11) or indexed in order that the data or information in it may be retrieved

NOTE This definition refers not only to written and printed materials in paper or microform versions (for example, conventional books, journals, diagrams, maps), but also to non-printed media such as machine-readable and digitized records, internet and intranet resources, films, sound recordings, people and organizations as knowledge resources, buildings, sites, monuments, three-dimensional objects or realia; and collections of such items or parts of such items.
3.25
entry term
lead-in term
term (3.84) provided in a controlled vocabulary (3.19), not for direct use in metadata (3.45), but for the
purpose of guiding the user to another term (3.84) which may be used as a category label (3.6), subject
heading (3.76) or preferred term (3.62).

NOTE Entry terms occurring in a thesaurus are generally known as non-preferred terms.

3.26
enumerative classification scheme
classification scheme (3.12) in which all the classes (3.10) available are explicitly listed in the schedules
(3.67)

cf. synthetic classification scheme (3.80)

3.27
equivalence mapping
mapping (3.41) that states that the concept (3.17) in the target vocabulary (3.82) is considered identical in
scope to the concept (3.17) in the source vocabulary (3.72)

cf. equivalence relationship (3.28)

3.28
equivalence relationship
relationship between two terms (3.84) in a thesaurus (3.86) that both represent the same concept (3.17)

NOTE In ordinary discourse, terms that are quasi-synonyms may represent slightly different concepts. After inclusion
in the thesaurus, however, the equivalence relationship clarifies that both are regarded as representing the same concept.
When two or more such terms are in the same language within a monolingual or multilingual thesaurus, one of them is
designated a preferred term and the other(s) as non-preferred term(s); when two or more such terms are in the different
languages of a multilingual thesaurus, each of them may be a preferred term in its own language respectively, and the
relationship is known as cross-language equivalence.

3.29
exchange format
machine-readable format for representing information that is intended to facilitate exchange of the information
between different applications

NOTE The exchange format for a thesaurus often uses a markup language based on a standard such as XML
(Extensible Markup Language), and is based on a data model for thesauri. While the data model provides a generic
description of thesaurus structure and semantics, the exchange format expresses this in a formal language for the
purpose of exchanging thesauri.

3.30
facet
grouping of concepts (3.17) of the same inherent category

EXAMPLE 1

Animals, mice, daffodils and bacteria could all be members of a living organisms facet.

EXAMPLE 2

Digging, writing and cooking could all be members of an actions facet.

EXAMPLE 3

Paris, the United Kingdom and the Alps could all be members of a places facet.
NOTE Examples of high-level categories that can be used for grouping concepts into facets are: objects, materials, agents, actions, places and times.

cf. node label (3.52)

3.31 faceted classification scheme
classification scheme in which concepts (3.17) are analysed into their constituent facets (3.30)

NOTE Schedules are compiled for each facet, and terms or notations from these are then combined according to prescribed rules to express a complex concept. Some complex concepts are often enumerated explicitly in the schedules; others can be synthesized by the user.

3.32 hierarchical relationship
relationship between a pair of concepts (3.17) of which one has a scope falling completely within the scope of the other

cf. broader term (3.3), narrower term (3.51)

NOTE Several different types of hierarchical relationship exist. For more explanation see ISO 25964-1:2011, 10.2.

3.33 homograph
one of two or more words that are written in the same way, but have different meanings

EXAMPLE

In English:
The word “bank” could refer to a financial institution or the side of a river.

In French:
The word “avocat” could refer to a lawyer or to a fruit.

NOTE Homographs are sometimes referred to as homonyms, although the latter term applies more broadly, as it also includes pairs of terms such as “weights” and “waits” in English or “mer” and “mère” in French, which sound the same although they are spelt differently.

3.34 identifier
set of symbols, usually alphanumeric, designating a concept (3.17) or a term (3.84) or another entity for purposes of unique identification within a determined context or resource, especially in a computer system or network

NOTE A notation is sometimes used as an identifier.

3.35 index term
term (3.84) assigned to a document (3.24) in the process of indexing (3.36)

NOTE Sometimes index terms are referred to as indexing terms, as keywords or as tags, but the latter terms have other meanings too. Preferred terms from a thesaurus are very often used as index terms.
3.36 **indexing**

intellectual analysis of the **subject** (3.75) matter of a **document** (3.24) to identify the **concepts** (3.17) represented in it, and allocation of the corresponding **index terms** (3.35) to allow the information to be retrieved

NOTE The term “subject indexing” is often used for this activity, but as ISO 25964 does not deal with the indexing of other elements such as authors or dates, “indexing” is sufficient. Indexing can be carried out by human users or by automated agents.

3.37 **information retrieval**

all the techniques and processes used to identify **documents** (3.24) relevant to an information need, from a **collection** (3.13) or network of information resources

NOTE Selection and inclusion of items in the collection are included in this definition; likewise browsing and other forms of information seeking.

3.38 **interoperability**

ability of two or more systems or components to exchange information and to use the information that has been exchanged

NOTE Vocabularies can support interoperability by including mappings to other vocabularies, by presenting data in standard formats and by using systems that support common computer protocols.

3.39 **map**, verb

establish relationships between the **concepts** (3.17) of one vocabulary and those of another

3.40 **mapping**, gerund (verbal noun)

process of establishing relationships between the **concepts** (3.17) of one vocabulary and those of another

3.41 **mapping**, noun

(product of mapping process) relationship between a **concept** (3.17) in one vocabulary and one or more **concepts** (3.17) in another

NOTE 1 A mapping generally has a direction, as discussed in Clause 6.

NOTE 2 Exceptionally, a mapping may involve a combination of two or more target vocabularies, where one or more of them act(s) as qualifier to the other (see 8.3.4).

3.42 **mapping cluster**

coordinated set of **mappings** (3.41) between the **concepts** (3.17) of three or more vocabularies

NOTE See examples of mapping clusters in 6.3 and 6.4. A mapping cluster is generally maintained and published with a particular publishing or application objective. For example, a cluster of mappings between four different thesauri might be maintained so that the user of any one of them can easily search document collections indexed with any of the four.

3.43 **markup**

annotations or other type of encoding embedded in text, in conformity with a **markup language** (3.44)
3.44 **markup language**
set of encoding conventions that can be used to provide instructions for the interpretation of a text, by the use of annotations embedded in the text itself

NOTE The interpretation often concerns issues such as content, structure or rendering of the text. Widely used examples include HTML (Hypertext Markup Language), which is largely concerned with presentation, and XML (Extensible Markup Language), which addresses the structure of text.

3.45 **metadata**
data that identify attributes of a document (3.24) typically used to support functions such as location, discovery, documentation, evaluation and/or selection

NOTE Preferred terms or notations selected during the indexing process are commonly applied as metadata values.

3.46 **microthesaurus**
designated subset of a thesaurus (3.86) that is capable of functioning as a complete thesaurus (3.86)

3.47 **monohierarchical structure**
hierarchical arrangement of concepts (3.17), in a thesaurus (3.86) or classification scheme (3.12), in which each concept (3.17) can have only one broader concept (3.17) at the level immediately above

cf. polyhierarchical structure (3.58)

EXAMPLE

In a monohierarchical structure, the concept of pianos cannot be listed under keyboard instruments as well as under stringed instruments; a choice has to be made of one of these concepts to determine its placing.

3.48 **multilingual thesaurus**
thesaurus (3.86) in which terms (3.84) and relational structures are available in two or more natural languages

3.49 **multi-word term**
term (3.84) consisting of more than one word

cf. compound term (3.16)

EXAMPLE

cost benefit analysis

3.50 **name authority list**
controlled vocabulary (3.19) for use in naming particular entities consistently

NOTE The entities in question are unique individuals, such as Benjamin Disraeli, Kilimanjaro or the Bayeux Tapestry, rather than classes such as politicians, mountains or embroideries. A name authority list may also be known as a name authority file. In this part of ISO 25964, a name authority list is sometimes referred to simply as an authority list.
3.51 narrower term
preferred term (3.62) representing a concept (3.17) which is narrower than the one in question

NOTE The scope of the narrower concept falls completely within the scope of the broader. The relationship between the two is commonly indicated with the tag NT. For more explanation see ISO 25964-1:2011, 10.2.1.

3.52 node label
label inserted into a hierarchical or classified (3.11) display to show how the terms (3.84) have been arranged

NOTE A node label is neither a preferred term nor a non-preferred term. It contains one of two different types of information: either a) the name of a facet to which following terms belong; or b) the attribute or characteristic of division by which an array of sibling concepts has been sorted or grouped. See examples in ISO 25964-1:2011, Clause 11.

3.53 non-preferred term
non-descriptor
term (3.84) that is not assigned to documents (3.24) but is provided as an entry point in a thesaurus (3.86) or index

cf. entry term (3.25)

EXAMPLE

<table>
<thead>
<tr>
<th>hounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE dogs</td>
</tr>
</tbody>
</table>

NOTE A non-preferred term is followed by a reference to the appropriate preferred term or preferred terms.

3.54 notation
class code
class number
classmark
set of symbols representing a concept (3.17) or class (3.10) in a structured vocabulary (3.74), especially a classification scheme (3.12)

EXAMPLES

<table>
<thead>
<tr>
<th>Notation</th>
<th>Source vocabulary</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.04.4</td>
<td>ILO Thesaurus</td>
<td>Fishery policy and development</td>
</tr>
<tr>
<td>622.342 2</td>
<td>Dewey Decimal Classification</td>
<td>gold mining</td>
</tr>
<tr>
<td>373.3.016.51</td>
<td>Universal Decimal Classification</td>
<td>mathematics curriculum in primary schools</td>
</tr>
<tr>
<td>SBS XEJ B</td>
<td>Bliss Bibliographic Classification</td>
<td>endangered species law</td>
</tr>
<tr>
<td>H40-H42</td>
<td>International Statistical Classification of Diseases and Related Health Problems</td>
<td>Glaucoma</td>
</tr>
</tbody>
</table>

NOTE Notation is sometimes used to sort and/or locate concepts in a pre-determined systematic order and, optionally, to display how the components of complex concepts have been structured and grouped. A notation can provide the link between alphabetical and systematic lists in a thesaurus. In the context of classification schemes, “concepts” are often known as “subjects”, especially when they are complex as in the examples above.
3.55 one-to-many mapping
mapping (3.41) in which a single concept (3.17) in one vocabulary is mapped (3.39) to a combination of two or more concepts (3.17) in another vocabulary

NOTE This situation is different from one in which a concept has two or more independent mappings to concepts in the other vocabulary.

3.56 one-to-one mapping
mapping (3.41) in which a single concept (3.17) in one vocabulary is mapped (3.39) to a single concept (3.17) in another vocabulary

NOTE 1 The terms or notations used to label the concepts in the two vocabularies may or may not be identical.

NOTE 2 It is possible for a single concept to have two or more one-to-one mappings, if these are independent of each other.

3.57 ontology
a formal, explicit specification of a shared conceptualization

NOTE This definition is attributable to Studer et al.[31], extending an earlier definition by Gruber[18], and is adopted in this part of ISO 25964 because it is widely accepted in the ontology development community. An ontology typically includes definitions of concepts and specified relationships between them, set out in a formal way so that a machine can use them for reasoning. This definition excludes thesauri, classification schemes and other structured vocabularies described in this part of ISO 25964, even though these are sometimes described as “lightweight ontologies”.

3.58 polyhierarchical structure
hierarchical arrangement of concepts (3.17), in a thesaurus (3.86) or classification scheme (3.12), in which each concept (3.17) can have more than one broader concept (3.17)

cf. monohierarchical structure (3.47)

EXAMPLE

In a polyhierarchical structure, organs (musical instruments) could be listed under keyboard instruments as well as under wind instruments.

NOTE In a polyhierarchical structure, a single concept can occur at more than one place in the hierarchical structure of the thesaurus. Its attributes and relationships, and specifically its narrower and related terms, are the same wherever it occurs.

3.59 post-coordination
combination of preferred terms (3.62) of a controlled vocabulary (3.19) at the time of searching

cf. pre-coordination (3.60)

EXAMPLE

The post-coordinated search expression “microwaves AND radiation” can be used to retrieve documents on microwave radiation, when these have been indexed under the separate terms “microwaves” and “radiation” rather than a compound term.
3.60 pre-coordination
combination of concepts (3.17), classes (3.10) or terms (3.84) of a controlled vocabulary (3.19) at the time of its construction or at the time of using it for indexing (3.36) or classification (3.11)
cf. post-coordination (3.59)

EXAMPLE 1

The class “general theory”, when placed within the broader class “music”, refers only to the pre-coordinated subject “theory of music” and not to theory in general.

EXAMPLE 2

The pre-coordinated string “cardboard — recycling” might appear in a subject heading scheme, or if not enumerated there, it might be synthesized by an indexer when needed for a particular document.

3.61 precision
measure of retrieval performance defined by R/T, where R is the number of relevant items retrieved and T is the total number of items retrieved from the same collection (3.13)

3.62 preferred term
descriptor
term (3.84) used to represent a concept (3.17) when indexing (3.36)
cf. non-preferred term (3.53)

NOTE A preferred term is usually a noun or noun phrase.

3.63 protocol
convention that defines the syntax, semantics and synchronization of the communication process between two computers in order to enable a particular service

3.64 quasi-synonym
near-synonym
one of two or more terms (3.84) whose meanings are generally regarded as different in ordinary usage but which may be treated as labels for the same concept (3.17), in a given controlled vocabulary (3.19)

EXAMPLES

diseases, disorders
earthquakes, earth tremors

3.65 recall
measure of retrieval performance defined by R/N, where R is the number of relevant items retrieved and N is the total number of relevant items in the collection (3.13)
3.66 related term
preferred term (3.62) representing a concept (3.17) which has an associative relationship (3.2) with the one in question

NOTE The relationship between related terms is commonly indicated with the tag RT. For more explanation, see ISO 25964-1:2011, 10.3.

3.67 schedule
terms (3.84), notations (3.54), captions (3.4), cross-references and scope notes (3.68) set out to exhibit the content and structure of a structured vocabulary (3.74)

3.68 scope note
note that defines or clarifies the semantic boundaries of a concept (3.17) as it is used in the structured vocabulary (3.74)

NOTE A term used to label a concept can have several meanings in normal usage. A scope note is used to restrict the concept to only one of those meanings, and where necessary refers to other concepts that are included or excluded from the scope of the concept being clarified.

3.69 search term
term (3.84) forming all or part of a search query

NOTE In the context of ISO 25964, search terms are usually drawn from a controlled vocabulary.

3.70 search thesaurus
vocabulary intended to assist searching even though it has not been used to index (3.36) the documents (3.24) being searched

NOTE Search thesauri are designed to facilitate choice of terms and/or expansion of search expressions to include terms for broader, narrower or related concepts, as well as synonyms. Optionally, a thesaurus complying with this part of ISO 25964 can be used as a search thesaurus.

3.71 source language
language serving as a starting point in translation or in a search for term (3.84) equivalents

3.72 source vocabulary
vocabulary that serves as a starting point when seeking a corresponding term (3.84) or concept (3.17) in another vocabulary

3.73 specificity
capability of a structured vocabulary (3.74) to express a subject (3.75) in depth and in detail

NOTE For more explanation see the discussion of specificity in ISO 25964-1:2011, 8.4, and other places.

3.74 structured vocabulary
organized set of terms (3.84), headings or codes representing concepts (3.17) and their inter-relationships, which can be used to support information retrieval (3.37)

NOTE A structured vocabulary can also be used for other purposes. In the context of information retrieval, the vocabulary needs to be accompanied by rules for how to apply the terms. Various types of structured vocabulary are discussed in this part of ISO 25964, including classification schemes, subject heading schemes, etc.
3.75
subject
concept (3.17) or combination of concepts (3.17) dealt with in a document (3.24) or occurring in discourse

3.76
subject heading
term (3.84) or pre-coordinated string of terms (3.84), drawn from a subject heading scheme (3.77)

3.77
subject heading scheme
subject heading language
subject heading list
SHL
structured vocabulary (3.74) comprising terms (3.84) available for subject indexing (3.36), plus rules for combining them into pre-coordinated strings of terms (3.84) where necessary

3.78
synonym
one of two or more terms (3.84) denoting the same concept (3.17)

EXAMPLES

<table>
<thead>
<tr>
<th>In English:</th>
<th>In French:</th>
</tr>
</thead>
<tbody>
<tr>
<td>guarantees, warranties</td>
<td>schiste, phyllade</td>
</tr>
<tr>
<td>heart attack, myocardial infarction</td>
<td>VIH, virus de l’immunodéficience humaine</td>
</tr>
<tr>
<td>HIV, human immunodeficiency virus</td>
<td>crise cardiaque, infarctus du myocarde</td>
</tr>
</tbody>
</table>

NOTE Abbreviations and their full forms can be treated as synonyms.

3.79
synonym ring
set of synonymous or almost synonymous terms (3.84), any of which can be used to refer to a particular concept (3.17)

EXAMPLE

stream; river; brook; beck; burn

3.80
synthetic classification scheme
classification scheme (3.12) in which users can synthesize notation (3.54) for complex classes (3.10) from lists of simpler classes (3.10)

cf. enumerative classification scheme (3.26)

3.81
target language
language providing a translation or an equivalent for a term (3.84) existing in a source language (3.71)

3.82
target vocabulary
vocabulary in which a term (3.84) or concept (3.17) is sought corresponding to an existing term (3.84) or concept (3.17) in a source vocabulary (3.72)