Safety of machinery — General principles for design — Risk assessment and risk reduction

Sécurité des machines — Principes généraux de conception — Appréciation du risque et réduction du risque
Contents

Foreword .. v
Introduction .. vi

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1

4 Strategy for risk assessment and risk reduction ... 9

5 Risk assessment ... 12

5.1 General ... 12

5.2 Information for risk assessment ... 12

5.3 Determination of limits of machinery ... 13

5.3.1 General ... 13

5.3.2 Use limits ... 13

5.3.3 Space limits .. 14

5.3.4 Time limits ... 14

5.3.5 Other limits ... 14

5.4 Hazard identification .. 14

5.5 Risk estimation ... 16

5.5.1 General .. 16

5.5.2 Elements of risk .. 17

5.5.3 Aspects to be considered during risk estimation .. 19

5.6 Risk evaluation ... 21

5.6.1 General .. 21

5.6.2 Adequate risk reduction ... 21

5.6.3 Comparison of risks .. 21

6 Risk reduction ... 22

6.1 General ... 22

6.2 Inherently safe design measures ... 23

6.2.1 General .. 23

6.2.2 Consideration of geometrical factors and physical aspects ... 23

6.2.3 Taking into account general technical knowledge of machine design 24

6.2.4 Choice of appropriate technology ... 25

6.2.5 Applying principle of positive mechanical action .. 25

6.2.6 Provisions for stability .. 25

6.2.7 Provisions for maintainability .. 26

6.2.8 Observing ergonomic principles ... 26

6.2.9 Electrical hazards ... 27

6.2.10 Pneumatic and hydraulic hazards .. 27

6.2.11 Applying inherently safe design measures to control systems ... 28

6.2.12 Minimizing probability of failure of safety functions .. 33

6.2.13 Limiting exposure to hazards through reliability of equipment ... 33

6.2.14 Limiting exposure to hazards through mechanization or automation of loading (feeding)/
 unloading (removal) operations ... 34

6.2.15 Limiting exposure to hazards through location of setting and maintenance points outside
danger zones ... 34

6.3 Safeguarding and complementary protective measures .. 34

6.3.1 General .. 34

6.3.2 Selection and implementation of guards and protective devices ... 35

6.3.3 Requirements for design of guards and protective devices ... 40

6.3.4 Safeguarding to reduce emissions ... 43
6.3.5 Complementary protective measures

6.4 Information for use

6.4.1 General requirements

6.4.2 Location and nature of information for use

6.4.3 Signals and warning devices

6.4.4 Markings, signs (pictograms) and written warnings

6.4.5 Accompanying documents (in particular — instruction handbook)

7 Documentation of risk assessment and risk reduction

Annex A (informative) Schematic representation of a machine

Annex B (informative) Examples of hazards, hazardous situations and hazardous events

Annex C (informative) Trilingual lookup and index of specific terms and expressions used in ISO 12100

Bibliography
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 12100 was prepared by Technical Committee ISO/TC 199, Safety of machinery.

Introduction

The primary purpose of this International Standard is to provide designers with an overall framework and guidance for decisions during the development of machinery to enable them to design machines that are safe for their intended use. It also provides a strategy for standards developers and will assist in the preparation of consistent and appropriate type-B and type-C standards.

The concept of safety of machinery considers the ability of a machine to perform its intended function(s) during its life cycle where risk has been adequately reduced.

This International Standard is the basis for a set of standards which has the following structure:

— **type-A standards** (basic safety standards) giving basic concepts, principles for design and general aspects that can be applied to machinery;

— **type-B standards** (generic safety standards) dealing with one safety aspect or one type of safeguard that can be used across a wide range of machinery:

 — type-B1 standards on particular safety aspects (for example, safety distances, surface temperature, noise);

 — type-B2 standards on safeguards (for example, two-hand controls, interlocking devices, pressure-sensitive devices, guards);

— **type-C standards** (machine safety standards) dealing with detailed safety requirements for a particular machine or group of machines.

This International Standard is a type-A standard.

When a type-C standard deviates from one or more technical provisions dealt with by this International Standard or by a type-B standard, the type-C standard takes precedence.

It is desirable that this International Standard be referred to in training courses and manuals to convey basic terminology and general design methods to designers.

ISO/IEC Guide 51 has been taken into account as far as practicable at the time of drafting of this International Standard.
Safety of machinery — General principles for design — Risk assessment and risk reduction

1 Scope

This International Standard specifies basic terminology, principles and a methodology for achieving safety in the design of machinery. It specifies principles of risk assessment and risk reduction to help designers in achieving this objective. These principles are based on knowledge and experience of the design, use, incidents, accidents and risks associated with machinery. Procedures are described for identifying hazards and estimating and evaluating risks during relevant phases of the machine life cycle, and for the elimination of hazards or the provision of sufficient risk reduction. Guidance is given on the documentation and verification of the risk assessment and risk reduction process.

This International Standard is also intended to be used as a basis for the preparation of type-B or type-C safety standards.

It does not deal with risk and/or damage to domestic animals, property or the environment.

NOTE 1 Annex B gives, in separate tables, examples of hazards, hazardous situations and hazardous events, in order to clarify these concepts and assist the designer in the process of hazard identification.

NOTE 2 The practical use of a number of methods for each stage of risk assessment is described in ISO/TR 14121-2.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60204-1:2005, Safety of machinery — Electrical equipment of machines — Part 1: General requirements

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 machinery

machine

assembly, fitted with or intended to be fitted with a drive system consisting of linked parts or components, at least one of which moves, and which are joined together for a specific application

NOTE 1 The term “machinery” also covers an assembly of machines which, in order to achieve the same end, are arranged and controlled so that they function as an integral whole.

NOTE 2 Annex A provides a general schematic representation of a machine.
3.2 reliability
ability of a machine or its components or equipment to perform a required function under specified conditions and for a given period of time without failing

3.3 maintainability
ability of a machine to be maintained in a state which enables it to fulfil its function under conditions of intended use, or to be restored to such a state, with the necessary actions (maintenance) being carried out according to specified practices and using specified means

3.4 usability
ability of a machine to be easily used owing to, among others, properties or characteristics that enable its function(s) to be easily understood

3.5 harm
physical injury or damage to health

3.6 hazard
potential source of harm

NOTE 1 The term “hazard” can be qualified in order to define its origin (for example, mechanical hazard, electrical hazard) or the nature of the potential harm (for example, electric shock hazard, cutting hazard, toxic hazard, fire hazard).

NOTE 2 The hazard envisaged by this definition either
— is permanently present during the intended use of the machine (for example, motion of hazardous moving elements, electric arc during a welding phase, unhealthy posture, noise emission, high temperature), or
— can appear unexpectedly (for example, explosion, crushing hazard as a consequence of an unintended/unexpected start-up, ejection as a consequence of a breakage, fall as a consequence of acceleration/deceleration).

NOTE 3 The French term “phénomène dangereux” should not be confused with the term “risque”, which was sometimes used instead in the past.

3.7 relevant hazard
hazard which is identified as being present at, or associated with, the machine

NOTE 1 A relevant hazard is identified as the result of one step of the process described in Clause 5.

NOTE 2 This term is included as basic terminology for type-B and type-C standards.

3.8 significant hazard
hazard which has been identified as relevant and which requires specific action by the designer to eliminate or to reduce the risk according to the risk assessment

NOTE This term is included as basic terminology for type-B and type-C standards.

3.9 hazardous event
event that can cause harm

NOTE A hazardous event can occur over a short period of time or over an extended period of time.
3.10 **hazardous situation**
circumstance in which a person is exposed to at least one hazard

NOTE The exposure can result in harm immediately or over a period of time.

3.11 **hazard zone**
danger zone
any space within and/or around machinery in which a person can be exposed to a hazard

3.12 **risk**
combination of the probability of occurrence of harm and the severity of that harm

3.13 **residual risk**
risk remaining after protective measures have been implemented

NOTE 1 This International Standard distinguishes
⎯ the residual risk after protective measures have been implemented by the designer,
⎯ the residual risk remaining after all protective measures have been implemented.

NOTE 2 See also Figure 2.

3.14 **risk estimation**
defining likely severity of harm and probability of its occurrence

3.15 **risk analysis**
combination of the specification of the limits of the machine, hazard identification and risk estimation

3.16 **risk evaluation**
judgment, on the basis of risk analysis, of whether the risk reduction objectives have been achieved

3.17 **risk assessment**
overall process comprising a risk analysis and a risk evaluation

3.18 **adequate risk reduction**
risk reduction that is at least in accordance with legal requirements, taking into consideration the current state of the art

NOTE Criteria for determining when adequate risk reduction is achieved are given in 5.6.2.

3.19 **protective measure**
measure intended to achieve risk reduction, implemented

⎯ by the designer (inherently safe design, safeguarding and complementary protective measures, information for use) and/or

⎯ by the user (organization: safe working procedures, supervision, permit-to-work systems; provision and use of additional safeguards; use of personal protective equipment; training)

NOTE See Figure 2.
3.20 inherently safe design measure
protection measure which either eliminates hazards or reduces the risks associated with hazards by changing
the design or operating characteristics of the machine without the use of guards or protective devices

NOTE See 6.2.

3.21 safeguarding
protection measure using safeguards to protect persons from the hazards which cannot reasonably be
eliminated or risks which cannot be sufficiently reduced by inherently safe design measures

NOTE See 6.3.

3.22 information for use
protection measure consisting of communication links (for example, text, words, signs, signals, symbols,
diagrams) used separately or in combination, to convey information to the user

NOTE See 6.4.

3.23 intended use
use of a machine in accordance with the information for use provided in the instructions

3.24 reasonably foreseeable misuse
use of a machine in a way not intended by the designer, but which can result from readily predictable human
behaviour

3.25 task
specific activity performed by one or more persons on, or in the vicinity of, the machine during its life cycle

3.26 safeguard
guard or protective device

3.27 guard
physical barrier, designed as part of the machine to provide protection

NOTE 1 A guard may act either
— alone, in which case it is only effective when “closed” (for a movable guard) or “securely held in place” (for a fixed
 guard), or
— in conjunction with an interlocking device with or without guard locking, in which case protection is ensured whatever
 the position of the guard.

NOTE 2 Depending on its construction, a guard may be described as, for example, casing, shield, cover, screen, door,
enclosing guard.

NOTE 3 The terms for types of guards are defined in 3.27.1 to 3.27.6. See also 6.3.3.2 and ISO 14120 for types of
guards and their requirements.

3.27.1 fixed guard
guard affixed in such a manner (for example, by screws, nuts, welding) that it can only be opened or removed
by the use of tools or by destruction of the affixing means
3.27.2 movable guard
guard which can be opened without the use of tools

3.27.3 adjustable guard
fixed or movable guard which is adjustable as a whole or which incorporates adjustable part(s)

3.27.4 interlocking guard
guard associated with an interlocking device so that, together with the control system of the machine, the following functions are performed:

— the hazardous machine functions “covered” by the guard cannot operate until the guard is closed,
— if the guard is opened while hazardous machine functions are operating, a stop command is given, and
— when the guard is closed, the hazardous machine functions “covered” by the guard can operate (the closure of the guard does not by itself start the hazardous machine functions)

NOTE ISO 14119 gives detailed provisions.

3.27.5 interlocking guard with guard locking
guard associated with an interlocking device and a guard locking device so that, together with the control system of the machine, the following functions are performed:

— the hazardous machine functions “covered” by the guard cannot operate until the guard is closed and locked,
— the guard remains closed and locked until the risk due to the hazardous machine functions “covered” by the guard has disappeared, and
— when the guard is closed and locked, the hazardous machine functions “covered” by the guard can operate (the closure and locking of the guard do not by themselves start the hazardous machine functions)

NOTE ISO 14119 gives detailed provisions.

3.27.6 interlocking guard with a start function
control guard
special form of interlocking guard which, once it has reached its closed position, gives a command to initiate the hazardous machine function(s) without the use of a separate start control

NOTE See 6.3.3.2.5 for detailed provisions on the conditions of use.

3.28 protective device
safeguard other than a guard

NOTE Examples of types of protective devices are 3.28.1 to 3.28.9.

3.28.1 interlocking device
interlock
mechanical, electrical or other type of device, the purpose of which is to prevent the operation of hazardous machine functions under specified conditions (generally as long as a guard is not closed)