Mechanical vibration — Criteria and safeguards for the in-situ balancing of medium and large rotors

Vibrations mécaniques — Critères et sauvegardes relatifs à l'équilibrage in situ des rotors moyens et grands
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 In-situ balancing</td>
<td>2</td>
</tr>
<tr>
<td>4.1 General</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Reasons for in-situ balancing</td>
<td>2</td>
</tr>
<tr>
<td>4.3 Objectives of in-situ balancing</td>
<td>3</td>
</tr>
<tr>
<td>5 Criteria for performing in-situ balancing</td>
<td>3</td>
</tr>
<tr>
<td>6 Safeguards</td>
<td>4</td>
</tr>
<tr>
<td>6.1 General</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Safety of personnel while operating close to a rotating shaft</td>
<td>4</td>
</tr>
<tr>
<td>6.3 Special operating envelope for in-situ balancing</td>
<td>4</td>
</tr>
<tr>
<td>6.4 Integrity and design of the correction masses and their attachments</td>
<td>4</td>
</tr>
<tr>
<td>6.5 Machinery-specific safety implications</td>
<td>5</td>
</tr>
<tr>
<td>7 Measurements</td>
<td>5</td>
</tr>
<tr>
<td>7.1 Vibration measurement equipment</td>
<td>5</td>
</tr>
<tr>
<td>7.2 Measurement errors</td>
<td>6</td>
</tr>
<tr>
<td>7.3 Phase reference signals</td>
<td>6</td>
</tr>
<tr>
<td>8 Operational conditions</td>
<td>8</td>
</tr>
<tr>
<td>9 Reporting</td>
<td>8</td>
</tr>
<tr>
<td>9.1 General</td>
<td>8</td>
</tr>
<tr>
<td>9.2 Report introduction</td>
<td>8</td>
</tr>
<tr>
<td>9.3 Vibration measurement equipment</td>
<td>9</td>
</tr>
<tr>
<td>9.4 Results</td>
<td>9</td>
</tr>
<tr>
<td>9.5 Text information</td>
<td>11</td>
</tr>
<tr>
<td>Annex A (normative) Precautions and safeguards for specific machine types during in-situ balancing</td>
<td>12</td>
</tr>
<tr>
<td>Annex B (informative) Example of an in-situ balancing report for a boiler fan < 1 MW</td>
<td>13</td>
</tr>
<tr>
<td>Annex C (informative) Example of an in-situ balancing report for a large > 50 MW turbine generator set</td>
<td>17</td>
</tr>
<tr>
<td>Bibliography</td>
<td>23</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20806 was prepared by Technical Committee ISO/TC 108, Mechanical vibration, shock and condition monitoring.

This second edition cancels and replaces the first edition (ISO 20806:2004), of which it constitutes a minor revision.
Introduction

Balancing is the process by which the mass distribution of a rotor is checked and, if necessary, adjusted to ensure that the residual unbalance or the vibrations of the journals/bearing supports and/or forces at the bearings are within specified limits. Many rotors are balanced in specially designed balancing facilities prior to installation into their bearings on site. However, if remedial work is carried out locally or a balancing machine is not available, it is becoming increasingly common to balance the rotor in situ.

Unlike balancing in a specially designed balancing machine, in-situ balancing has the advantage that the rotor is installed in its working environment. Therefore there is no compromise with regard to the dynamic properties of its bearings and support structure, nor from the influence of other elements in the complete rotor train. However, it has the large disadvantage of restricted access and the need to operate the whole machine. Restricted access can limit the planes at which correction masses can be added, and using the whole machine has commercial penalties of both downtime and running costs. Where gross unbalance exists, it may not be possible to balance a rotor in situ due to limited access to balance planes and the size of correction masses available.

A general guide to the International Standards associated with mechanical balancing of rotors is given in ISO 19499[4]. Rotors with a constant (rigid) behaviour are covered by ISO 1940-1 and rotors with a shaft elastic (flexible) behaviour are covered by ISO 11342[3].
Mechanical vibration — Criteria and safeguards for the in-situ balancing of medium and large rotors

1 Scope

This International Standard specifies procedures to be adopted when balancing medium and large rotors installed in their own bearings on site. It addresses the conditions under which it is appropriate to undertake in-situ balancing, the instrumentation required, the safety implications and the requirements for reporting and maintaining records.

This International Standard can be used as a basis for a contract to undertake in-situ balancing.

It does not provide guidance on the methods used to calculate the correction masses from measured vibration data.

NOTE The procedures covered in this International Standard are suitable for medium and large machines. However, many of the principles are equally applicable to machines of a smaller size, where it is necessary to maintain good records of the vibration behaviour and the correction mass configurations.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including amendments) applies.

ISO 1925, Mechanical vibration — Balancing — Vocabulary

ISO 1940-1, Mechanical vibration — Balance quality requirements for rotors in a constant (rigid) state — Part 1: Specification and verification of balance tolerances

ISO 2041, Mechanical vibration, shock and condition monitoring — Vocabulary

ISO 2954, Mechanical vibration, shock and condition monitoring — Requirements for instruments for measuring vibration severity

ISO 7919 (all parts), Mechanical vibration — Evaluation of machine vibration by measurements on rotating shafts

ISO 10816 (all parts), Mechanical vibration — Evaluation of machine vibration by measurements on non-rotating parts

ISO 10817-1, Rotating shaft vibration measuring systems — Part 1: Relative and absolute sensing of radial vibration
3 Terms and definitions

For the purpose of this document, the terms and definitions given in ISO 1925 and ISO 2041 apply.

3.1 in-situ balancing

process of balancing a rotor in its own bearings and support structure, rather than in a balancing machine

NOTE Adapted from the definition of “field balancing” in ISO 1925:2001, 4.14. As it is easier to understand, the term “in-situ balancing” is to replace “field balancing” in the next revision of ISO 1925.

4 In-situ balancing

4.1 General

For in-situ balancing, correction masses are added to the rotor at a limited number of conveniently engineered and accessible locations along the rotor. By doing this the magnitude of shaft and/or pedestal vibrations and/or unbalance is reduced to within acceptable values, so that the machine can operate safely throughout its whole operating envelope. As part of a successful balance, transient speed vibration may be compromised to some degree to obtain acceptable normal running speed vibration on a fixed speed machinery train.

NOTE In certain cases, machines that are very sensitive to unbalance cannot be successfully balanced over the complete operating envelope. This usually occurs when a machine is operating at a speed close to a lightly damped system mode (see ISO 10814[2]) and has load-dependent unbalance.

Most sites have limited instrumentation and data-processing capabilities, when compared to a balancing facility, and additional instrumentation is required to undertake in-situ balancing in these situations. In addition, the potential safety implications of running a rotor with correction masses shall be taken into account.

4.2 Reasons for in-situ balancing

4.2.1 Although individual rotors may be correctly balanced, as appropriate, in a high- or low-speed balancing machine, in-situ balancing might be required when the rotors are coupled into the complete rotor train. This could be due to a range of differences between the real machine and the isolated environment in the balancing machine, including:

a) a difference in dynamic characteristics of the rotor supports between the balancing facility and the installed machine;

b) assembly errors that occur during installation, which cannot be reasonably found and corrected;

c) rotor systems that cannot be balanced prior to assembly;

d) a changing unbalance behaviour of the rotor under full functional operating conditions.

4.2.2 Balancing might also be required to compensate for in-service changes to the rotor, including:

a) wear;

b) loss of components, such as rotor blade erosion shields;

c) repair work, where components could be changed or replaced;

d) movement of components on the rotor train causing unbalance, such as couplings, gas turbine discs and generator end rings.

NOTE Rotor blades are normally added as balanced sets, but this may not be possible if a small number of blades are replaced.
4.2.3 *In-situ* balancing might be necessary due to a range of economic and technical reasons, including:

a) the investment in a balancing machine cannot be justified;

b) when a suitable balancing machine is not available in the correct location or at the required time;

c) when it is not economic to dismantle the machine and transport the rotor(s) to a suitable balancing facility.

4.2.4 Machines under normal operation and/or during speed variations (following remedial work, or after commissioning) might have unacceptable magnitudes of vibration when compared with common practice, contractual requirements, or International Standards such as ISO 10816 (all parts) and ISO 7919 (all parts). In many cases, it may be possible to bring the machine within acceptable vibration magnitude by *in-situ* balancing.

4.3 Objectives of *in-situ* balancing

The reason for balancing is to reduce the vibration magnitudes to acceptable values for long-term operation. For most machines, the overall vibration magnitude limits shall either be based on common practice or the appropriate part of ISO 10816 and ISO 7919 for pedestals and shafts, respectively.

Where the magnitude of unbalance is of concern, reduce the magnitude of unbalance to within permissible limits (see ISO 1940-1 for details).

5 Criteria for performing *in-situ* balancing

Prior to *in-situ* balancing, a feasibility study shall be carried out to assess if the available correction planes are suitable to influence the vibration behaviour being observed, since limited access to correction planes and measurement points on the fully built-up machine can make *in-situ* balancing impractical. Where possible, experience from previous *in-situ* balancing should be used. Sometimes modal analysis may be required.

In-situ balancing shall only be attempted in the following circumstances:

a) the reasons for the high vibrations are understood and cannot be corrected at the source;

b) after analysis of the vibration behaviour, it is judged that balancing is a safe and practical approach;

c) under the required normal operating conditions, the vibration vector is steady and repeatable prior to and during *in-situ* balancing;

d) the addition of correction masses only affects the once-per-revolution component of vibration and, therefore, *in-situ* balancing shall only be carried out if this is a significant component of the overall vibration magnitude.

In special circumstances, where the once-per-revolution vibration component changes during normal operation of the machine (such as thermally induced bends in generator rotors), it is possible to reach acceptable balancing results across the operating envelope by adding correction masses. Here, with the vibration magnitude at full speed, no load might be compromised to obtain an acceptable vibration magnitude at full load. Again, this shall only be attempted if the reasons for the unbalance are understood.

NOTE When systems are operating in a non-linear mode, correction masses can affect other vibration components, including both sub and high shaft speed harmonics.

The once-per-revolution component of vibration might not originate from unbalance but be generated from system forces such as those found in hydraulic pumps and electric motors. Many defects, such as shaft alignment errors and tilting bearings, can also contribute to the once-per-revolution component of vibration. Such effects should not normally be corrected by balancing, since balancing is effective at only a single speed and could mask a real system fault.
The first shaft order vectors of synchronous vibration should be sufficiently steady such that the amplitude of the variation is not significant relative to the amplitude of the mean vibration vector.

Where sufficient design data of the rotor system are available, rotor dynamic modelling can be used to aid the choice of suitable balance planes and correction mass combinations.

6 Safeguards

6.1 General

WARNING — *In-situ* balancing shall only be undertaken by a skilled team, including both customer and supplier, who understand the consequences of adding trial and correction masses and have experience of operating the machine. Failure to do this can place the whole machine and staff at risk.

6.2 Safety of personnel while operating close to a rotating shaft

While undertaking *in-situ* balancing, the machine is operated under special conditions, allowing access to rotating components to add trial and final correction masses. Strict safety procedures shall be in place to ensure that the machine cannot be rotated while personnel have access to the shaft and that no temporary equipment can become entwined when the shaft is rotated.

6.3 Special operating envelope for *in-situ* balancing

Machines may be quickly run up and run down many times and can have unusual loading conditions during the *in-situ* balancing exercise, which could be outside the normal operating envelope of a machine. Examples for specific machine types that shall be taken into account are given in Annex A. It shall be established that such operations are not detrimental to the integrity or the life of the whole machine.

However, as no general list of machine types can cover all situations, it is necessary to review individually the integrity requirements for each *in-situ* balance.

6.4 Integrity and design of the correction masses and their attachments

When trial and correction masses are added, it shall be confirmed that they are securely attached and their mountings are capable of carrying the required loads. The correction masses shall not interfere with normal operation, such as coming into contact with stationary components due to shaft expansion. The correction masses should be fitted in accordance with the manufacturer's instructions, if available.

Correction masses are often attached with bolts or by welding. It shall be ensured that neither the bolt holes nor the welding process compromise the integrity of the rotor component to which the correction masses are attached, or the function of the component, such as cooling. Furthermore, correction masses shall be compatible with their operating environment, such as temperature and chemical composition of the atmosphere.

Where possible, the total mass of the correction masses on each plane shall be minimized by consolidating those added from previous balancing exercises. However, correction masses that have been added for specific reasons (such as to balance the individual disc or counteract for blade root eccentricity errors) should not be changed.

When correction masses are added to non-integral rotating components, these parts should be match marked so that the proper assembly orientation can be maintained.
6.5 Machinery-specific safety implications

General safety requirements associated with in-situ balancing are discussed in 6.2 to 6.4, but precautions and safeguards for specific machine types, given in Annex A, shall be taken into account. However, as no general list of safety precautions can cover all machinery and all situations, it is necessary to review individually the safety requirements for each in-situ balance.

7 Measurements

7.1 Vibration measurement equipment

Basic procedures for the evaluation of vibration by means of measurements made directly on the rotating shaft shall conform to ISO 7919-1 and the measurement system shall conform to ISO 10817-1. Measurement procedures for transducers mounted on the pedestal shall conform to ISO 10816-1 and the measurement system shall conform to ISO 2954. Either system shall have sufficient frequency range to capture data for the full speed range over which the machine is to be balanced. The transducers shall have the necessary sensitivity and shall be located at the appropriate positions to measure the effects of the correction masses.

On flexible support structures, pedestal measurements may give the best results. On rigid supports, shaft relative transducers can be more responsive. Guidance as to the most suitable measurement system can also be gained from previous experience and rotor dynamic modelling. When eddy current non contact transducers are used to measure the shaft relative motion the signal might be compromised by electrical and/or mechanical run out of the measurement track (for details, see ISO 7919-1 and ISO 10817-1). Where these effects significantly influence the true reading the source should be isolated and appropriate corrections made. If available, shaft absolute measurement can be used, which provides a shaft position independent of the pedestal movement.

ISO 7919 (all parts) and ISO 10816 (all parts) are concerned with acceptable overall vibration values for machinery operating under steady-state conditions. For balancing, the vibration measurement equipment shall have the additional facility to extract the once-per-revolution component of vibration, giving both amplitude and phase. Furthermore, ISO 7919 (all parts) and ISO 10816 (all parts) apply to the radial measurement directions on all bearings and the axial direction for only the thrust bearing. However, in some special conditions, axial measurements on other bearings shall be carried out where necessary.

In-situ balancing is normally carried out to reduce the vibration magnitude at the operating speed and while passing through the system resonances, during run up and run down. The measurement equipment shall have sufficient dynamic range to measure both amplitude and phase over the full speed and operating ranges under consideration.

Vibration shall be measured at selected locations where it is necessary to reduce its magnitude. However, balancing can improve the vibration magnitude at some locations or directions at the expense of others. Therefore, it is recommended to have additional transducers on adjacent rotors or bearings. Whilst, for monitoring purposes, measurements in only one direction may be sufficient, for an in-situ balance it is advisable to measure in two orthogonal directions, where possible.

Where permanently installed transducers are used, it is advisable to check their calibration, in both amplitude and phase, immediately prior to balancing. Permanently installed shaft relative transducers are not normally checked for calibration, but a phase and shaft run out check is advisable. It is normally sufficient to check the phase of the shaft transducers by ensuring the signal has the correct polarity. Where accessible, pedestal transducers shall be checked against portable equipment.

NOTE In some cases, it can be useful to measure the full orbit of vibration and in this instance it is necessary to have pairs of transducers at selected axial measurement locations along the shaft. Strictly, it is only necessary to have two non-parallel transducers to describe the orbit; however, orthogonal pairs are usually used.