Dentistry — Base polymers —
Part 1: Denture base polymers

Art dentaire — Polymères de base — Partie 1: Polymères pour base de prothèses dentaires
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Classification</td>
<td>3</td>
</tr>
<tr>
<td>5 Requirements</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Unpolymerized material</td>
<td>4</td>
</tr>
<tr>
<td>5.2 Polymerized material</td>
<td>4</td>
</tr>
<tr>
<td>6 Sampling</td>
<td>6</td>
</tr>
<tr>
<td>7 Preparation of test specimens</td>
<td>7</td>
</tr>
<tr>
<td>7.1 Laboratory environment</td>
<td>7</td>
</tr>
<tr>
<td>7.2 Procedures</td>
<td>7</td>
</tr>
<tr>
<td>7.3 Special equipment</td>
<td>7</td>
</tr>
<tr>
<td>8 Test methods</td>
<td>7</td>
</tr>
<tr>
<td>8.1 Inspection for compliance determination</td>
<td>7</td>
</tr>
<tr>
<td>8.2 Packing plasticity</td>
<td>8</td>
</tr>
<tr>
<td>8.3 Colour</td>
<td>10</td>
</tr>
<tr>
<td>8.4 Colour stability</td>
<td>10</td>
</tr>
<tr>
<td>8.5 Polishability, translucency, freedom from porosity, ultimate</td>
<td>12</td>
</tr>
<tr>
<td>flexural strength and flexural modulus</td>
<td></td>
</tr>
<tr>
<td>8.6 Fracture toughness with a modified bending test</td>
<td>17</td>
</tr>
<tr>
<td>8.7 Bonding to synthetic polymer teeth</td>
<td>22</td>
</tr>
<tr>
<td>8.8 Residual methyl methacrylate monomer</td>
<td>23</td>
</tr>
<tr>
<td>8.9 Water sorption and solubility</td>
<td>28</td>
</tr>
<tr>
<td>9 Requirements for labelling, marking, packaging and instructions</td>
<td>30</td>
</tr>
<tr>
<td>9.1 Packaging</td>
<td>30</td>
</tr>
<tr>
<td>9.2 Marking of outer packages and containers</td>
<td>30</td>
</tr>
<tr>
<td>9.3 Manufacturer’s instructions</td>
<td>31</td>
</tr>
<tr>
<td>Annex A (normative) HPLC method for determination of MMA content</td>
<td>33</td>
</tr>
<tr>
<td>Bibliography</td>
<td>36</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20795-1 was prepared by Technical Committee ISO/TC 106, Dentistry, Subcommittee SC 2, Prosthodontic materials.

Significant differences between this first edition of ISO 20795-1 and the third edition of ISO 1567 and Amendment 1 lie with requirements and tests for materials with improved impact resistance.

ISO 20795 consists of the following parts, under the general title Dentistry — Base polymers:

— Part 1: Denture base polymers

— Part 2: Orthodontic base polymers
Introduction

Specific qualitative and quantitative requirements for freedom from biological hazard are not included in this part of ISO 20795, but it is recommended that in assessing possible biological or toxicological hazards, reference be made to ISO 10993-1 and ISO 7405.
Dentistry — Base polymers —

Part 1: Denture base polymers

1 Scope

1.1 This part of ISO 20795 classifies denture base polymers and copolymers and specifies their requirements. It also specifies the test methods to be used in determining compliance with these requirements. It further specifies requirements with respect to packaging and marking the products and to the instructions to be supplied for use of these materials. Furthermore it applies to denture base polymers for which the manufacturer claims that the material has improved impact resistance. It also specifies the respective requirement and the test method to be used.

1.2 Although this part of ISO 20795 does not require manufacturers to declare details of the composition, attention is drawn to the fact that some national or international authorities require such details to be provided.

1.3 This part of ISO 20795 applies to denture base polymers such as those listed below:

 a) poly(acrylic acid esters);
 b) poly(substituted acrylic acid esters);
 c) poly(vinyl esters);
 d) polystyrene;
 e) rubber modified poly(methacrylic acid esters);
 f) polycarbonates;
 g) polysulfones;
 h) poly(dimethacrylic acid esters);
 i) polyacetals (polyoxyethylene);
 j) copolymers or mixtures of the polymers listed in a) to i).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 463:2006, Geometrical Product Specifications (GPS) — Dimensional measuring equipment — Design and metrological characteristics of mechanical dial gauges
3 Terms and definitions

For the purposes of this document the terms and definitions given in ISO 1942 and the following apply.

3.1 autopolymerizable materials
products having polymerization initiated by chemical means and not requiring application of temperatures above 65 °C to complete the polymerization

3.2 capsulated material
material consisting of two or more components supplied in a container that keeps them separated until the time they are mixed together and dispensed for use directly from the container

3.3 denture
artificial substitute for missing natural teeth and adjacent tissues, to also include any additions needed for optimum function

3.4 denture base
that part of a denture which rests on soft tissue foundations and to which artificial teeth are added

3.5 heat-polymerizable materials
products requiring application of temperatures above 65 °C to complete polymerization

3.6 immediate container
container that is in direct contact with the denture base materials

3.7 liquid
monomeric liquid to be mixed with polymeric particles to form a mouldable dough or fluid resin mixture used for forming denture bases

3.8 powder
polymeric particles to be mixed with monomeric liquid to form a mouldable dough or fluid resin mixture used for forming denture bases

3.9 outer packaging
labelled container or wrapping within which other containers are packed
3.10 packing
(of a denture) act of filling a denture base mould with a material (using a compression, pour or injection technique) to form a denture base

3.11 initial packing time
time after mixing, or other preparation, when a denture base material mixture first reaches packing consistency

3.12 final packing time
last time, after achievement of the initial packing time, at which a denture base material mixture retains packing consistency

3.13 processing
procedure of preparing a solid denture base polymer plate and/or specimen by polymerization or injection moulding

3.14 thermoplastic, adj
characteristic of a hard polymeric material that allows it to be softened by application of heat to make it mouldable, and then return to the hardened state upon cooling

3.15 translucency
capacity of a body of material to allow the passage of light, yet diffusing the light so as not to render objects lying beyond the body clearly visible

4 Classification

Denture base polymers covered by this part of ISO 20795 are categorized into the following types and classes:

— Type 1: Heat-polymerizable materials
 — Class 1: Powder and liquid
 — Class 2: Plastic cake

— Type 2: Autopolymerizable Materials
 — Class 1: Powder and liquid
 — Class 2: Powder and liquid for pour-type resins

— Type 3: Thermoplastic blank or powder

— Type 4: Light-activated materials

— Type 5: Microwave cured materials
5 Requirements

5.1 Unpolymerized material

5.1.1 Liquid component

5.1.1.1 General

The liquid shall consist essentially of monomeric material compatible with the powder.

5.1.1.2 Homogeneity

The liquid shall be free of deposit or sediment that can be observed by visual inspection (see 8.1.1).

5.1.2 Solid components

The solid or semi-solid components shall be free of extraneous material that can be observed by visual inspection (see 8.1.1).

5.1.3 Packing plasticity

When Type 1 Class 1 and Type 2 Class 1 materials are tested in accordance with 8.2, at the initial packing time recommended by the manufacturer, they shall be capable of being intruded into at least two holes in the die (8.2.2.1) to a depth of not less than 0.5 mm (see 8.2.4.2). Type 1 Class 1, Type 1 Class 2, and Type 5 materials shall meet the requirements when tested at the final packing time (see 8.2.4.3).

5.2 Polymerized material

5.2.1 Biocompatibility

Specific qualitative requirements for freedom from biological hazard are not included in this part of ISO 20795, but it is recommended that, in assessing possible biological or toxicological hazards, reference be made to ISO 10993-1 and ISO 7405.

5.2.2 Surface characteristics

5.2.2.1 When processed in the manner recommended by the manufacturer and in contact with materials recommended by the manufacturer, denture base specimens prepared in accordance with 8.4.3, 8.8.2.2 and 8.9.3 shall have a smooth, hard and glossy surface (see 8.1.1).

5.2.2.2 The specimens for colour stability, the specimens for residual methyl methacrylate monomer and the specimens for sorption and solubility testing shall retain their form without visible distortion after processing (see 8.1.1).

5.2.2.3 When polished in accordance with 8.5.1.4, the specimen plates shall present a smooth surface with a high gloss (see 8.1.1).

5.2.3 Shape capability

When prepared in accordance with the manufacturer’s instructions, all types of denture base polymers shall produce a test specimen plate (8.5.1.4) with defined edges after deflasking (see 8.5.1.4).

5.2.4 Colour

The colour of a specimen strip shall be as stated by the manufacturer when tested in accordance with 8.3 and inspected in accordance with 8.1.1.
The manufacturer shall provide a shade guide on request.

Coloured denture base polymers shall be translucent (see 5.2.6 and 8.5.2) and pigment and fibres shall be evenly distributed.

Clear (transparent) denture base polymers shall be clear and colourless.

5.2.5 Colour stability

When tested in accordance with 8.4 and inspected in accordance with 8.1.1, test specimens shall not show more than a slight change in colour.

5.2.6 Translucency

When tested in accordance with 8.5.2.3 the shadow of the illuminated opaque disc shall be visible from the opposite side of the test specimen plate.

5.2.7 Freedom from porosity

When prepared in accordance with 8.5.3.3, a specimen's strips shall not show voids that can be observed by visual inspection (see 8.1.1).

5.2.8 Ultimate flexural strength

When determined in accordance with 8.5.3.5, the ultimate flexural strength shall be not less than 65 MPa for Type 1, Type 3, Type 4 and Type 5 polymers and not less than 60 MPa for Type 2 polymers (see Table 1).

5.2.9 Flexural modulus

When determined in accordance with 8.5.3.5, the flexural modulus of the processed polymer shall be at least 2 000 MPa for Type 1, Type 3, Type 4 and Type 5 polymers and at least 1 500 MPa for Type 2 polymers (see Table 1).

5.2.10 Maximum stress intensity factor for materials with improved impact resistance

Where a manufacturer claims a material with improved impact resistance, the maximum stress intensity factor shall be at least 1.9 MPa m$^{1/2}$ when tested in accordance with 8.6 (see Table 2).

5.2.11 Total fracture work

Where a manufacturer claims a material with improved impact resistance, the total fracture work shall be at least 900 J/m2 when tested in accordance with 8.6 (see Table 2).

5.2.12 Bonding to synthetic polymer teeth

Denture base polymers intended for use with synthetic polymer teeth shall meet one of the following requirements.

a) The polymer shall, when tested in accordance with 8.7, be capable of bonding to polymer teeth complying with the bonding requirements of ISO 22112.

b) If there are problems of achieving bonding, the manufacturer’s instructions shall contain information about special treatments necessary to achieve bonding [see 9.3 k)].