Respiratory tract humidifiers for medical use — Particular requirements for respiratory humidification systems

Humidificateurs respiratoires médicaux — Exigences spécifiques des systèmes d'humidification respiratoires
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
Contents

- **Foreword** ... v
- **Introduction** ... vi
- **1 Scope** .. 1
- **2 Normative references** ... 2
- **3 Terms and definitions** .. 2
- **4 General requirements and general requirements for tests** .. 4
- **5 Classification** ... 4
- **6 Identification, marking and documents** ... 5
- **7 Power input** ... 7
- **8 Basic safety categories** ... 7
- **9 Removable protective means** .. 7
- **10 Environmental conditions** ... 7
- **11 Not used** .. 8
- **12 Not used** .. 8
- **13 General** ... 8
- **14 Requirements related to classification** ... 8
- **15 Limitation of voltage and/or energy** ... 8
- **16 Enclosures and protective covers** ... 8
- **17 Separation** .. 8
- **18 Protective earthing, functional earthing and potential equalization** 8
- **19 Continuous leakage currents and patient auxiliary currents** .. 8
- **20 Dielectric strength** .. 9
- **21 Mechanical strength** ... 9
- **22 Moving parts** ... 9
- **23 Surface, corners and edges** ... 9
- **24 Stability in normal use** .. 9
- **25 Expelled parts** .. 9
- **26 Vibration and noise** ... 9
- **27 Pneumatic and hydraulic power** ... 9
- **28 Suspended masses** .. 9
- **29 X-Radiation** .. 10
- **30 Alpha, beta, gamma, neutron radiation and other particle radiation** 10
- **31 Microwave radiation** .. 10
- **32 Light radiation (including lasers)** .. 10
- **33 Infra-red radiation** .. 10
- **34 Ultraviolet energy** .. 10
- **35 Acoustical energy (including ultrasonics)** ... 10
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 8185 was prepared by Technical Committee ISO/TC 121, Anaesthetic and respiratory equipment, Subcommittee SC 3, Lung ventilators and related equipment.

This third edition cancels and replaces the second edition (ISO 8185:1997), which has been technically revised. It also incorporates the Technical Corrigendum, ISO 8185:1997/Cor. 1:2001.
Introduction

This International Standard is a Particular Standard based on IEC 60601-1:1988, including Amendments 1 (1991) and 2 (1995), hereafter referred to as the General Standard. The General Standard is the basic standard for the safety of all medical electrical equipment used by, or under the supervision of, qualified personnel in the general medical and patient environment; it also contains certain requirements for reliable operation to ensure safety.

The General Standard has associated Collateral Standards and Particular Standards. The Collateral Standards include requirements for specific technologies and/or hazards and apply to all applicable equipment, such as medical systems, EMC, radiation protection in diagnostic X-ray equipment, software, etc. The Particular Standards apply to specific equipment types, such as medical electron accelerators, high frequency surgical equipment, hospital beds, etc.

NOTE Definitions of Collateral Standard and Particular Standard are found in IEC 60601-1:1988, 1.5 and A.2, respectively.

To facilitate the use of this International Standard, the following drafting conventions have been applied.

This International Standard uses the same main Clause titles and numbering as the General Standard, to facilitate cross-referencing of the requirements. The changes to the text of the General Standard are specified by the use of the following words.

— “Replacement” means that the indicated Clause or Subclause of the General Standard is replaced completely by the text of this International Standard.

— “Addition” means that the relevant text of this International Standard is supplementary to the requirements of the General Standard.

— “Amendment” means that existing text of the General Standard is modified as indicated by the text of this International Standard.

To avoid confusion with any amendments to the General Standard itself, a particular numbering has been employed for elements added by this International Standard: subclauses, tables and figures are numbered starting from 101; additional list items are lettered aa), bb), etc. and additional annexes are lettered AA, BB, etc.

In this International Standard, the following print types are used:

— requirements, compliance with which can be verified, and definitions: roman type;

— notes and examples: smaller roman type;

— description of type of document change and test methods: italic type;

— terms defined in the General Standard IEC 60601-1:1988, Clause 2 or in this International Standard: bold type.

Throughout this International Standard, text for which a rationale is provided in Annex AA is indicated by an asterisk (*).
Humidifiers are used to raise the water content of gases delivered to patients. Gases available for medical use do not contain sufficient moisture and can damage or irritate the respiratory tract or desiccate secretions of patients whose upper airways have been bypassed. Reduction of the relative humidity at the patient connection port can cause desiccation of tracheo-bronchial secretions in the tracheal or tracheostomy tube, and consequently may cause narrowing or even obstruction of the airway [19]. Heat can be employed to increase the water output of the humidifier.

In addition, many humidifiers utilise heated breathing tubes in order to increase operating efficiency and reduce water and heat loss. Ventilator and anaesthesia breathing tubes in common use might not withstand the heat generated by humidifiers and heated breathing tube mechanisms.

Many humidifier manufacturers use off-the-shelf electrical connectors for their electrically-heated breathing tubes. However, since different manufacturers have used the same electrical connector for different power outputs, electrically-heated breathing tubes can be physically, but not electrically, interchangeable. Use of improper electrically-heated breathing tubes has caused overheating, circuit melting, patient and operator burns, and fires. It was not found practical to specify the interface requirements for electrical connectors to ensure compatibility between humidifiers and breathing tubes produced by different manufacturers.

Since the safe use of a humidifier depends on the interaction of the humidifier with its many accessories, this International Standard sets total-system performance requirements, applicable to accessories such as breathing tubes (both heated and non-heated), temperature sensors, and devices intended to control the environment within these breathing tubes.
Respiratory tract humidifiers for medical use — Particular requirements for respiratory humidification systems

1 Scope

IEC 60601-1:1988, Clause 1, applies, except as follows:

Amendment (add at the end of 1.1):

This International Standard includes requirements for the basic safety and essential performance of humidification systems, as defined in 3.6. This International Standard also includes requirements for individual devices specified for use in humidification systems such as heated breathing tubes (heated-wire breathing tubes) and devices intended to control these heated breathing tubes (heated breathing tube controllers). ISO 5367 specifies other safety and performance requirements for breathing tubes.

NOTE Heated breathing tubes are medical electrical equipment and are subject to the requirements of IEC 60601-1.

* This International Standard also includes requirements for active HME (heat and moisture exchanger) devices, which actively add heat and moisture to increase the humidity level of the gas delivered from the HME to the patient. This International Standard is not applicable to passive HMEs, which return a portion of the patient’s expired moisture and heat to the respiratory tract during inspiration without adding heat and moisture. ISO 9360-1 and ISO 9360-2 specify safety and performance requirements for passive HMEs and describe methods for testing performance.

Respiratory tract humidifiers can be gas-powered, electrically-powered, or both. However, this International Standard has been prepared as a Particular Standard based on IEC 60601-1, which gives general requirements for all aspects of safety, not only electrical safety, and many of the requirements are therefore applicable to humidifiers not powered by electricity. Where this International Standard specifies that a Clause of IEC 60601-1 applies, it means that the Clause applies only if the requirement is relevant to the humidification system under consideration.

This International Standard is not applicable to devices commonly referred to as "room humidifiers" or humidifiers used in heating, ventilation and air conditioning systems, or humidifiers incorporated into infant incubators.

This International Standard is not applicable to nebulizers used for the delivery of drugs to patients.

In the planning and design of products within the scope of this International Standard, it is advisable to give due consideration to the environmental impact from the product during its life cycle. Environmental aspects are addressed in Annex GG.

NOTE Additional aspects of environmental impact are addressed in ISO 14971.
2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3744:1994, Acoustics — Determination of sound power levels of noise sources using sound pressure — Engineering method in an essentially free field over a reflecting plane

ISO 4135:2001, Anaesthetic and respiratory equipment — Vocabulary

ISO 5356-1:2004, Anaesthetic and respiratory equipment — Conical connectors — Part 1: Cones and sockets

ISO 5367:2000, Breathing tubes intended for use with anaesthetic apparatus and ventilators

ISO 7396-1:2002, Medical gas pipeline systems — Part 1: Pipelines for compressed medical gases and vacuum

ISO 9360-1:2000, Anaesthetic and respiratory equipment — Heat and moisture exchangers (HMEs) for humidifying respired gases in humans — Part 1: HMEs for use with minimum tidal volumes of 250 ml

ISO 9360-2:2001, Anaesthetic and respiratory equipment — Heat and moisture exchangers (HMEs) for humidifying respired gases in humans — Part 2: HMEs for use with tracheostomized patients having minimum tidal volumes of 250 ml

ISO 10524-1:2006, Pressure regulators for use with medical gases — Part 1: Pressure regulators and pressure regulators with flow-metering devices

IEC 60079-4:1975, Electrical apparatus for explosive gas atmospheres — Part 4: Method of test for ignition temperature

IEC 60601-1-6:2004, Medical electrical equipment — Part 1-6: General requirements for safety — Collateral standard: Usability

IEC 60601-1-8:2003, Medical electrical equipment — Part 1-8: General requirements for safety — Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems

IEC 60601-2-19:1990, Medical electrical equipment — Part 2: Particular requirements for safety of baby incubators

3 Terms and definitions

For the purposes of this document, the terms and definitions given in Clause 2 of IEC 60601-1:1988, IEC 60601-1-8:2003, ISO 4135:2001, and the following apply.

NOTE For convenience, the sources of all defined terms used in this International Standard are given in Annex II.

3.1 accessible surface temperature

temperature of any surface which can be touched by a hand or finger during normal use, which includes filling and refilling of the humidifier
3.2 active HME
device where water, water vapour or heat is actively added to the heat and moisture exchanger (HME) to increase the humidity level of the gas delivered from the HME to the patient

3.3 delivered gas temperature
temperature of the gas, or aerosol, or both, at the patient connection port

3.4 heated breathing tube controller
device which controls the temperature or the heating of a breathing tube

NOTE The controller can be either stand-alone or part of the humidifier.

3.5 humidification chamber
part of the humidifier in which vaporization or nebulization takes place

3.6 humidification system
complete system that comprises a humidifier and accessories

NOTE Accessories can include a breathing tube (heated or unheated), breathing tube heater, heated breathing tube controller, and temperature sensor.

3.7 humidification system output
total mass of water (in the form of liquid and vapour) per unit volume of gas normalized to body temperature, atmospheric pressure and saturated (BTPS), i.e. at 37 °C, 101,3 kPa (760 mmHg) and saturated with water vapour at the patient connection port

3.8 humidifier
device that adds water in the form of droplets or vapour, or both, to the inspired gas

NOTE This term includes vaporizing, bubble-through and ultrasonic humidifiers and active heat and moisture exchangers (HMEs).

3.9 liquid container
part of the humidifier which holds the liquid

NOTE 1 The liquid container can be accessible to the breathing gas.

NOTE 2 The liquid container can also be part of the humidification chamber.

NOTE 3 The liquid container can be detachable for filling.

3.10 liquid reservoir
part of the humidifier which replenishes the liquid container

3.11 maximum operating pressure
maximum pressure in the humidification chamber

3.12 measured gas temperature
temperature of the gas, or aerosol, or both, that the humidification system is measuring and, if applicable, displaying