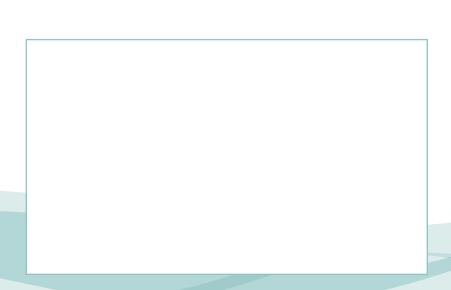
SVENSK STANDARD SS-EN ISO 16890-1:2017

Fastställd/Approved: 2017-01-09 Publicerad/Published: 2017-01-12

Utgåva/Edition: 1

Språk/Language: engelska/English


ICS: 91.140.30

Luftfilter för allmän ventilation -

Del 1: Tekniska specifikationer, krav och klassificeringssystem för partikelavskiljningsgrad (ePM) (ISO 16890-1:2016)

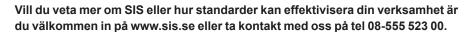
Air filters for general ventilation -

Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) (ISO 16890-1:2016)

Standarder får världen att fungera

SIS (Swedish Standards Institute) är en fristående ideell förening med medlemmar från både privat och offentlig sektor. Vi är en del av det europeiska och globala nätverk som utarbetar internationella standarder. Standarder är dokumenterad kunskap utvecklad av framstående aktörer inom industri, näringsliv och samhälle och befrämjar handel över gränser, bidrar till att processer och produkter blir säkrare samt effektiviserar din verksamhet.

Delta och påverka


Som medlem i SIS har du möjlighet att påverka framtida standarder inom ditt område på nationell, europeisk och global nivå. Du får samtidigt tillgång till tidig information om utvecklingen inom din bransch.

Ta del av det färdiga arbetet

Vi erbjuder våra kunder allt som rör standarder och deras tillämpning. Hos oss kan du köpa alla publikationer du behöver – allt från enskilda standarder, tekniska rapporter och standardpaket till handböcker och onlinetjänster. Genom vår webbtjänst e-nav får du tillgång till ett lättnavigerat bibliotek där alla standarder som är aktuella för ditt företag finns tillgängliga. Standarder och handböcker är källor till kunskap. Vi säljer dem.

Utveckla din kompetens och lyckas bättre i ditt arbete

Hos SIS kan du gå öppna eller företagsinterna utbildningar kring innehåll och tillämpning av standarder. Genom vår närhet till den internationella utvecklingen och ISO får du rätt kunskap i rätt tid, direkt från källan. Med vår kunskap om standarders möjligheter hjälper vi våra kunder att skapa verklig nytta och lönsamhet i sina verksamheter.

Standards make the world go round

SIS (Swedish Standards Institute) is an independent non-profit organisation with members from both the private and public sectors. We are part of the European and global network that draws up international standards. Standards consist of documented knowledge developed by prominent actors within the industry, business world and society. They promote cross-border trade, they help to make processes and products safer and they streamline your organisation.

Take part and have influence

As a member of SIS you will have the possibility to participate in standardization activities on national, European and global level. The membership in SIS will give you the opportunity to influence future standards and gain access to early stage information about developments within your field.

Get to know the finished work

We offer our customers everything in connection with standards and their application. You can purchase all the publications you need from us - everything from individual standards, technical reports and standard packages through to manuals and online services. Our web service e-nav gives you access to an easy-to-navigate library where all standards that are relevant to your company are available. Standards and manuals are sources of knowledge. We sell them.

Increase understanding and improve perception

With SIS you can undergo either shared or in-house training in the content and application of standards. Thanks to our proximity to international development and ISO you receive the right knowledge at the right time, direct from the source. With our knowledge about the potential of standards, we assist our customers in creating tangible benefit and profitability in their organisations.

If you want to know more about SIS, or how standards can streamline your organisation, please visit www.sis.se or contact us on phone +46 (0)8-555 523 00

Europastandarden EN ISO 16890-1:2016 gäller som svensk standard. Detta dokument innehåller den officiella engelska versionen av EN ISO 16890-1:2016.

Denna standard ersätter SS-EN 779:2012, utgåva 3.

The European Standard EN ISO 16890-1:2016 has the status of a Swedish Standard. This document contains the official English version of EN ISO 16890-1:2016.

This standard supersedes the Swedish Standard SS-EN 779:2012, edition 3.

© Copyright/Upphovsrätten till denna produkt tillhör SIS, Swedish Standards Institute, Stockholm, Sverige. Användningen av denna produkt regleras av slutanvändarlicensen som återfinns i denna produkt, se standardens sista sidor.

© Copyright SIS, Swedish Standards Institute, Stockholm, Sweden. All rights reserved. The use of this product is governed by the end-user licence for this product. You will find the licence in the end of this document.

Upplysningar om sakinnehållet i standarden lämnas av SIS, Swedish Standards Institute, telefon 08-555 520 00. Standarder kan beställas hos SIS Förlag AB som även lämnar allmänna upplysningar om svensk och utländsk standard.

Information about the content of the standard is available from the Swedish Standards Institute (SIS), telephone +46 8 555 520 00. Standards may be ordered from SIS Förlag AB, who can also provide general information about Swedish and foreign standards.

Denna standard är framtagen av kommittén för Filter, SIS/TK 170/AG 01.

Har du synpunkter på innehållet i den här standarden, vill du delta i ett kommande revideringsarbete eller vara med och ta fram andra standarder inom området? Gå in på www.sis.se - där hittar du mer information.

Provläsningsexemplar / Preview

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 16890-1

December 2016

ICS 91.140.30

Supersedes EN 779:2012

English Version

Air filters for general ventilation - Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) (ISO 16890-1:2016)

Filtres à air de ventilation générale - Partie 1: Spécifications techniques, exigences et système de classification fondé sur l'efficacité des particules en suspension (ePM) (ISO 16890-1:2016) Luftfilter für die allgemeine Raumlufttechnik - Teil 1: Technische Bestimmungen, Anforderungen und Effizienzklassifizierungssystem basierend auf Feinstaub (PM) (ISO 16890-1:2016)

This European Standard was approved by CEN on 19 September 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Provläsningsexemplar / Preview

Con	Contents		
Europ	ean foreword	¥	
Introd	uction	v	
1	Scope	1	
2	Normative references		
3	Terms and definitions		
4	Symbols and abbreviated terms	4	
5	Technical specifications and requirements 5.1 General 5.2 Material 5.3 Nominal air flow rate 5.4 Resistance to air flow 5.5 Fractional efficiency curves (particle size efficiency spectrum) 5.6 Arrestance		
6	Test methods and procedure	6	
7	Classification system based on particulate matter efficiency (ePM) 7.1 Definition of a standardized particles size distribution of ambient air 7.2 Calculation of the particulate matter efficiencies (ePM) 7.3 Classification	6 9	
8	Reporting 8.1 General 8.2 Interpretation of test reports 8.3 Summary	10	
	A (informative) Shedding from filters		
Annex	B (informative) Examples	19	
Annex	C (informative) Estimation of downstream fine dust concentrations	23	
Biblio	graphy	26	

European foreword

This document (EN ISO 16890-1:2016) has been prepared by Technical Committee ISO/TC 142 "Cleaning equipment for air and other gases" in collaboration with Technical Committee CEN/TC 195 "Air filters for general air cleaning" the secretariat of which is held by UNI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2017, and conflicting national standards shall be withdrawn at the latest by June 2017.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 779:2012.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 16890-1:2016 has been approved by CEN as EN ISO 16890-1:2016 without any modification.

Introduction

The effects of particulate matter (PM) on human health have been extensively studied in the past decades. The results are that fine dust can be a serious health hazard, contributing to or even causing respiratory and cardiovascular diseases. Different classes of particulate matter can be defined according to the particle size range. The most important ones are PM₁₀, PM_{2,5} and PM₁. The U.S. Environmental Protection Agency (EPA), the World Health Organization (WHO) and the European Union define PM₁₀ as particulate matter which passes through a size-selective inlet with a 50 % efficiency cut-off at 10 μ m aerodynamic diameter. PM_{2,5} and PM₁ are similarly defined. However, this definition is not precise if there is no further characterization of the sampling method and the sampling inlet with a clearly defined separation curve. In Europe, the reference method for the sampling and measurement of PM₁₀ is described in EN 12341. The measurement principle is based on the collection on a filter of the PM₁₀ fraction of ambient particulate matter and the gravimetric mass determination (see EU Council Directive 1999/30/EC of 22 April 1999).

As the precise definition of PM_{10} , $PM_{2,5}$ and PM_1 is quite complex and not simple to measure, public authorities, like the U.S. EPA or the German Federal Environmental Agency (Umweltbundesamt), increasingly use in their publications the more simple denotation of PM_{10} as being the particle size fraction less or equal to $10~\mu m$. Since this deviation to the above mentioned complex "official" definition does not have a significant impact on a filter element's particle removal efficiency, the ISO 16890 series refers to this simplified definition of PM_{10} , $PM_{2,5}$ and PM_1 .

Particulate matter in the context of the ISO 16890 series describes a size fraction of the natural aerosol (liquid and solid particles) suspended in ambient air. The symbol $e{\rm PM_x}$ describes the efficiency of an air cleaning device to particles with an optical diameter between 0,3 $\mu{\rm m}$ and x $\mu{\rm m}$. The following particle size ranges are used in the ISO 16890 series for the listed efficiency values.

Table 1 — Optical particle diameter size ranges for the definition of the efficiencies, ePM_X

Efficiency	Size range , μm
ePM ₁₀	0,3 ≤ × ≤10
ePM _{2,5}	0,3 ≤ × ≤2,5
ePM ₁	0,3 ≤ × ≤1

Air filters for general ventilation are widely used in heating, ventilation and air-conditioning applications of buildings. In this application, air filters significantly influence the indoor air quality and, hence, the health of people, by reducing the concentration of particulate matter. To enable design engineers and maintenance personnel to choose the correct filter types, there is an interest from international trade and manufacturing for a well-defined, common method of testing and classifying air filters according to their particle efficiencies, especially with respect to the removal of particulate matter. Current regional standards are applying totally different testing and classification methods, which do not allow any comparison with each other, and thus hinder global trade with common products. Additionally, the current industry standards have known limitations by generating results which often are far away from filter performance in service, i.e. overstating the particle removal efficiency of many products. With this new ISO 16890 series, a completely new approach for a classification system is adopted, which gives better and more meaningful results compared to the existing standards.

The ISO 16890 series describes the equipment, materials, technical specifications, requirements, qualifications and procedures to produce the laboratory performance data and efficiency classification based upon the measured fractional efficiency converted into a particulate matter efficiency (ePM) reporting system.

Air filter elements according to the ISO 16890 series are evaluated in the laboratory by their ability to remove aerosol particulate expressed as the efficiency values $e\mathrm{PM}_1$, $e\mathrm{PM}_{2,5}$ and $e\mathrm{PM}_{10}$. The air filter elements can then be classified according to the procedures defined in this part of ISO 16890. The particulate removal efficiency of the filter element is measured as a function of the particle size in the range of 0,3 μ m to 10 μ m of the unloaded and unconditioned filter element as per the procedures defined in ISO 16890-2. After the initial particulate removal efficiency testing, the air filter element is

SS-EN ISO 16890-1:2017 (E)

conditioned according to the procedures defined in ISO 16890-4 and the particulate removal efficiency is repeated on the conditioned filter element. This is done to provide information about the intensity of any electrostatic removal mechanism which may or may not be present with the filter element for test. The average efficiency of the filter is determined by calculating the mean between the initial efficiency and the conditioned efficiency for each size range. The average efficiency is used to calculate the $e\mathrm{PM}_X$ efficiencies by weighting these values to the standardized and normalized particle size distribution of the related ambient aerosol fraction. When comparing filters tested in accordance with the ISO 16890 series, the fractional efficiency values shall always be compared among the same $e\mathrm{PM}_X$ class (ex. $e\mathrm{PM}_1$ of filter A with $e\mathrm{PM}_1$ of filter B). The test dust capacity and the initial arrestance of a filter element are determined as per the test procedures defined in ISO 16890-3.

Air filters for general ventilation —

Part 1:

Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM)

1 Scope

This part of ISO 16890 establishes an efficiency classification system of air filters for general ventilation based upon particulate matter (PM). It also provides an overview of the test procedures, and specifies general requirements for assessing and marking the filters, as well as for documenting the test results. It is intended for use in conjunction with ISO 16890-2, ISO 16890-3 and ISO 16890-4.

The test method described in this part of ISO 16890 is applicable for air flow rates between 0,25 m 3 /s (900 m 3 /h, 530 ft 3 /min) and 1,5 m 3 /s (5 400 m 3 /h, 3 178 ft 3 /min), referring to a test rig with a nominal face area of 610 mm × 610 mm (24 inch × 24 inch).

ISO 16890 (all parts) refers to particulate air filter elements for general ventilation having an ePM_1 efficiency less than or equal to 99 % when tested according to the procedures defined within ISO 16890-1, ISO 16890-2, ISO 16890-3 and ISO 16890-4. Air filter elements with a higher initial efficiency are evaluated by other applicable test methods (see ISO 29463-1, ISO 29463-2, ISO 29463-3, ISO 29463-4 and ISO 29463-5).

Filter elements used in portable room-air cleaners are excluded from the scope of this part of ISO 16890.

The performance results obtained in accordance with ISO 16890 (all parts) cannot by themselves be quantitatively applied to predict performance in service with regard to efficiency and lifetime. Other factors influencing performance to be taken into account are described in Annex A.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15957, Test dusts for evaluating air cleaning equipment

ISO 16890-2, Air filter for general ventilation — Part 2: Measurement of fractional efficiency and air flow resistance

ISO 16890-3, Air filter for general ventilation — Part 3: Determination of the gravimetric efficiency and the air flow resistance versus the mass of test dust captured

ISO 16890-4, Air filter for general ventilation — Part 4: Conditioning method to determine the minimum fractional test efficiency

ISO 29464:2011, Cleaning equipment for air and other gases — Terminology

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 29464 and the following apply.

3.1 Arrestance and efficiency