Geografisk information – Textkodning för beskrivning av koordinatsystem (ISO 19162:2015, IDT)

Geographic information – Well-known text representation of coordinate reference systems (ISO 19162:2015, IDT)
Standarder får världen att fungera

SIS (Swedish Standards Institute) är en fristående ideell förening med medlemmar från både privat och offentlig sektor. Vi är en del av det europeiska och globala nätverk som utarbetar internationella standarder. Standarder är dokumenterad kunskap utvecklad av framstående aktörer inom industri, näringsliv och samhälle och beferrnar handel över gränser, bidrar till att processer och produkter blir säkrare samt effektivisera din verksamhet.

Delta och påverka
Som medlem i SIS har du möjlighet att påverka framtida standarder inom ditt område på nationell, europeisk och global nivå. Du får samtidigt tillgång till tidig information om utvecklingen inom din bransch.

Ta del av det färdiga arbetet

Utveckla din kompetens och lyckas bättre i ditt arbete

Vill du veta mer om SIS eller hur standarder kan effektivisera din verksamhet är du välkommen in på www.sis.se eller ta kontakt med oss på tel 08-555 523 00.

Standards make the world go round

SIS (Swedish Standards Institute) is an independent non-profit organisation with members from both the private and public sectors. We are part of the European and global network that draws up international standards. Standards consist of documented knowledge developed by prominent actors within the industry, business world and society. They promote cross-border trade, they help to make processes and products safer and they streamline your organisation.

Take part and have influence
As a member of SIS you will have the possibility to participate in standardization activities on national, European and global level. The membership in SIS will give you the opportunity to influence future standards and gain access to early stage information about developments within your field.

Get to know the finished work
We offer our customers everything in connection with standards and their application. You can purchase all the publications you need from us - everything from individual standards, technical reports and standard packages through to manuals and online services. Our web service e-nav gives you access to an easy-to-navigate library where all standards that are relevant to your company are available. Standards and manuals are sources of knowledge. We sell them.

Increase understanding and improve perception
With SIS you can undergo either shared or in-house training in the content and application of standards. Thanks to our proximity to international development and ISO you receive the right knowledge at the right time, direct from the source. With our knowledge about the potential of standards, we assist our customers in creating tangible benefit and profitability in their organisations.

If you want to know more about SIS, or how standards can streamline your organisation, please visit www.sis.se or contact us on phone +46 (0)8-555 523 00

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Conformance requirements</td>
<td>1</td>
</tr>
<tr>
<td>3 Normative references</td>
<td>2</td>
</tr>
<tr>
<td>4 Definitions and abbreviations</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>5 Backus-Naur Form notation and syntax</td>
<td>8</td>
</tr>
<tr>
<td>6 WKT string form</td>
<td>9</td>
</tr>
<tr>
<td>6.1 Overview</td>
<td>9</td>
</tr>
<tr>
<td>6.2 Encoding</td>
<td>9</td>
</tr>
<tr>
<td>6.3 Characters used in WKT</td>
<td>11</td>
</tr>
<tr>
<td>6.3.1 Basic characters</td>
<td>11</td>
</tr>
<tr>
<td>6.3.2 Numbers</td>
<td>11</td>
</tr>
<tr>
<td>6.3.3 Date and time</td>
<td>12</td>
</tr>
<tr>
<td>6.3.4 CRS WKT characters</td>
<td>12</td>
</tr>
<tr>
<td>6.3.5 Double quote</td>
<td>13</td>
</tr>
<tr>
<td>6.4 Delimiter</td>
<td>13</td>
</tr>
<tr>
<td>6.5 Case sensitivity</td>
<td>13</td>
</tr>
<tr>
<td>6.6 Reserved keywords</td>
<td>13</td>
</tr>
<tr>
<td>6.7 Backward compatibility</td>
<td>15</td>
</tr>
<tr>
<td>7 WKT representation of common attributes</td>
<td>15</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>7.2 Name</td>
<td>15</td>
</tr>
<tr>
<td>7.3 Scope, extent, identifier and remark</td>
<td>15</td>
</tr>
<tr>
<td>7.3.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>7.3.2 Scope</td>
<td>16</td>
</tr>
<tr>
<td>7.3.3 Extent</td>
<td>16</td>
</tr>
<tr>
<td>7.3.4 Identifier</td>
<td>18</td>
</tr>
<tr>
<td>7.3.5 Remark</td>
<td>19</td>
</tr>
<tr>
<td>7.4 Unit and unit conversion factor</td>
<td>20</td>
</tr>
<tr>
<td>7.5 Coordinate system</td>
<td>21</td>
</tr>
<tr>
<td>7.5.1 Syntax</td>
<td>21</td>
</tr>
<tr>
<td>7.5.2 Coordinate system type and dimension</td>
<td>22</td>
</tr>
<tr>
<td>7.5.3 Axis name and abbreviation</td>
<td>23</td>
</tr>
<tr>
<td>7.5.4 Axis direction</td>
<td>24</td>
</tr>
<tr>
<td>7.5.5 Axis order</td>
<td>25</td>
</tr>
<tr>
<td>7.5.6 Axis unit and coordinate system unit</td>
<td>25</td>
</tr>
<tr>
<td>7.5.7 Examples of WKT describing coordinate systems</td>
<td>26</td>
</tr>
<tr>
<td>8 WKT representation of geodetic coordinate reference systems</td>
<td>28</td>
</tr>
<tr>
<td>8.1 Overview</td>
<td>28</td>
</tr>
<tr>
<td>8.2 Geodetic datum</td>
<td>28</td>
</tr>
<tr>
<td>8.2.1 Ellipsoid</td>
<td>28</td>
</tr>
<tr>
<td>8.2.2 Prime meridian</td>
<td>29</td>
</tr>
<tr>
<td>8.2.3 Datum</td>
<td>30</td>
</tr>
<tr>
<td>8.3 Coordinate systems for geodetic CRSs</td>
<td>31</td>
</tr>
<tr>
<td>8.4 Examples of WKT describing a geodetic CRS</td>
<td>31</td>
</tr>
</tbody>
</table>
9 WKT representation of projected CRSs ...32
 9.1 Overview ..32
 9.2 Base CRS ..32
 9.2.1 General ..32
 9.2.2 Ellipsoidal CS unit ..33
 9.3 Map projection ...33
 9.3.1 Introduction ...33
 9.3.2 Map projection name and identifier ..34
 9.3.3 Map projection method ...34
 9.3.4 Map projection parameter ...35
 9.4 Coordinate systems for projected CRSs ...35
 9.4.1 Examples of WKT describing a projected CRS35
10 WKT representation of vertical CRSs ...36
 10.1 Overview ..36
 10.2 Vertical datum ..37
 10.3 Vertical coordinate system ...37
 10.4 Example of WKT describing a vertical CRS ..37
11 WKT representation of engineering CRSs ...37
 11.1 Overview ..37
 11.2 Engineering datum ..38
 11.3 Coordinate systems for engineering CRSs ..38
 11.4 Examples of WKT describing an engineering CRS38
12 WKT representation of image CRSs ...39
 12.1 Overview ..39
 12.2 Image datum ..39
 12.3 Coordinate systems for image CRSs ..40
13 WKT representation of parametric CRSs ..40
 13.1 Overview ..40
 13.2 Parametric datum ..40
 13.3 Parametric coordinate system ..40
 13.4 Example of WKT describing a parametric CRS41
14 WKT representation of temporal CRSs ..41
 14.1 Overview ..41
 14.2 Temporal datum ...41
 14.3 Temporal coordinate system ...41
 14.4 Example of WKT describing a temporal CRS41
15 WKT representation of derived CRSs ...42
 15.1 Overview ..42
 15.2 Derived CRS conversion ...42
 15.2.1 Introduction ...42
 15.2.2 Derived CRS conversion method ..43
 15.2.3 Derived CRS conversion parameter ..43
 15.2.4 Derived CRS conversion parameter file ..44
 15.2.5 Derived CRS conversion example ..44
 15.3 Derived CRS of type geodetic ...44
 15.3.1 Representation ...44
 15.3.2 Example of WKT describing a derived geodetic CRS45
 15.4 Derived CRS of type vertical ...45
 15.5 Derived CRS of type engineering ...46
 15.5.1 Representation ...46
 15.5.2 Examples of WKT describing a derived engineering CRS47
 15.6 Derived CRS of type parametric ...48
 15.7 Derived CRS of type temporal ...48
16 WKT representation of compound coordinate reference systems49
 16.1 Overview ..49
 16.2 Examples of WKT describing a compound CRS50
17 WKT representation of coordinate operations .. 51
17.1 Coordinate operations .. 51
17.2 Coordinate operation components .. 51
17.2.1 Source and target CRS .. 51
17.2.2 Coordinate operation name and identifier ... 51
17.2.3 Coordinate operation method .. 52
17.2.4 Coordinate operation parameter .. 52
17.2.5 Coordinate operation parameter file .. 53
17.2.6 Interpolation CRS ... 53
17.2.7 Coordinate operation accuracy .. 53
17.2.8 Other coordinate operation attributes .. 53
17.3 Examples of WKT describing a coordinate operation .. 54
18 WKT representation of CRS and coordinate operation couplets 55
18.1 Bound CRS ... 55
18.2 Bound CRS components .. 56
18.2.1 Abridged coordinate transformation .. 56
18.2.2 Coordinate operation method in abridged coordinate transformations 56
18.2.3 Abridged coordinate transformation parameter .. 57
18.2.4 Coordinate operation parameter file .. 57
18.3 Examples of WKT describing a Bound CRS ... 58

Annex A (normative) Abstract test suite .. 59
A.1 Conformance of a WKT string describing a geodetic CRS ... 59
A.2 Conformance of a WKT string describing a projected CRS .. 59
A.3 Conformance of a WKT string describing a vertical CRS .. 60
A.4 Conformance of a WKT string describing an engineering CRS ... 60
A.5 Conformance of a WKT string describing an image CRS ... 61
A.6 Conformance of a WKT string describing a parametric CRS ... 61
A.7 Conformance of a WKT string describing a temporal CRS ... 62
A.8 Conformance of a WKT string describing a derived CRS .. 62
A.9 Conformance of a WKT string describing a compound CRS .. 63
A.10 Conformance of a WKT string describing a coordinate operation 63
A.11 Conformance of a WKT string describing a Bound CRS .. 64

Annex B (informative) Recommended practice for implementation 65
B.1 Introduction ... 65
B.2 Keywords ... 65
B.2.1 Keyword case sensitivity ... 65
B.2.2 Alternative keywords ... 65
B.2.3 Handling of unrecognised keywords ... 65
B.3 Characters ... 65
B.3.1 Handling of unrecognised characters .. 65
B.3.2 String length .. 65
B.4 White space ... 66
B.4.1 Insertion of white space ... 66
B.4.2 Parsing of white space outside of quoted text .. 66
B.4.3 Parsing of white space within quoted text .. 66
B.5 Identifiers .. 66
B.5.1 Use of identifier ... 66
B.5.2 Using names to interpret identity .. 66
B.6 Numbers ... 67
B.6.1 Precision ... 67
B.6.2 Defining parameters for a sphere .. 67
B.6.3 Implied units .. 67
B.7 Attribute order .. 67
B.8 Version of CRS WKT .. 67

Annex C (informative) Mapping of concepts from previous versions of CRS WKT 68
C.1 BNF ... 68
C.2 Backward compatibility of CRS common attributes ... 68
C.2.1 Name ... 68
C.2.2 ID (Authority) ..68
C.3 Backward compatibility of coordinate reference system components ...69
C.3.1 Ellipsoid ...69
C.3.2 Prime meridian ...69
C.3.3 Datum ...69
C.3.4 Map projection ...70
C.3.5 Coordinate system ...71
C.4 Backward compatibility of coordinate reference systems ..72
C.4.1 Geodetic CRS ..72
C.4.2 Projected CRS ...73
C.4.3 Vertical CRS and engineering (local) CRS ...73
C.4.4 Compound CRS ..74
C.4.5 Fitted CS ...74
C.5 Backward compatibility of coordinate operations ...74
C.6 Mapping of tokens and keywords from previous versions of CRS WKT to this International Standard ...75
Annex D (informative) Triaxial ellipsoid ...79
Annex E (informative) Identifiers for coordinate operation methods and parameters80
E.1 Introduction ...80
E.2 Map projection methods ..81
E.3 Map projection parameters ..81
E.4 Coordinate transformation methods ..83
E.5 Coordinate transformation parameters ...83
Bibliography ..85
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 211, jointly with the Open Geospatial Consortium (OGC).
Introduction

Well-known Text (WKT) offers a compact machine- and human-readable representation of geometric objects. WKT may also be used for succinctly describing the critical elements of coordinate reference system (CRS) definitions.

WKT was described in the Open Geospatial Consortium implementation specifications 99-036 through 06-103r4 and International Standard ISO 19125-1:2004, "Geographic information – Simple feature access – Part 1: Common architecture". The WKT representation of coordinate reference systems was subsequently extended in Open Geospatial Consortium implementation specification 01-009 "Coordinate Transformation Services" and this extension was later adopted in the Open Geospatial Consortium GeoAPI 3.0 implementation standard 09-083r3 and GeoPackage 1.0 implementation standard 12-128r10. The WKT representation of coordinate reference systems as defined in ISO 19125-1:2004 and OGC specification 01-009 is inconsistent with the terminology and technical provisions of ISO 19111:2007 and OGC Abstract Specification topic 2 (08-015r2), "Geographic information – Spatial referencing by coordinates".

This International Standard provides an updated version of WKT representation of coordinate reference systems that follows the provisions of ISO 19111:2007 and ISO 19111-2:2009. It extends earlier WKT to allow for the description of coordinate operations. This International Standard defines the structure and content of well-known text strings. It does not prescribe how implementations should read or write these strings.
Geographic information — Well-known text representation of coordinate reference systems

1 Scope

This International Standard defines the structure and content of a text string implementation of the abstract model for coordinate reference systems described in ISO 19111:2007 and ISO 19111-2:2009. The string defines frequently needed types of coordinate reference systems and coordinate operations in a self-contained form that is easily readable by machines and by humans. The essence is its simplicity; as a consequence there are some constraints upon the more open content allowed in ISO 19111:2007. To retain simplicity in the well-known text (WKT) description of coordinate reference systems and coordinate operations, the scope of this International Standard excludes parameter grouping and pass-through coordinate operations. The text string provides a means for humans and machines to correctly and unambiguously interpret and utilise a coordinate reference system definition with look-ups or cross references only to define coordinate operation mathematics. Because it omits metadata about the source of the data and may omit metadata about the applicability of the information, the WKT string is not suitable for the storage of definitions of coordinate reference systems or coordinate operations.

2 Conformance requirements

This International Standard defines eleven classes of conformance (see Annex A) in three groups:

1) Any WKT string claiming conformance of coordinate reference system definition shall satisfy the requirements in Annex A as shown in Table 1.

Table 1 — Conformance requirements for coordinate reference systems

<table>
<thead>
<tr>
<th>Coordinate reference system type</th>
<th>Conformance requirements given in</th>
</tr>
</thead>
<tbody>
<tr>
<td>geodetic</td>
<td>A.1</td>
</tr>
<tr>
<td>projected</td>
<td>A.2</td>
</tr>
<tr>
<td>vertical</td>
<td>A.3</td>
</tr>
<tr>
<td>engineering</td>
<td>A.4</td>
</tr>
<tr>
<td>image</td>
<td>A.5</td>
</tr>
<tr>
<td>parametric</td>
<td>A.6</td>
</tr>
<tr>
<td>temporal</td>
<td>A.7</td>
</tr>
<tr>
<td>derived geodetic</td>
<td>A.8</td>
</tr>
<tr>
<td>derived vertical</td>
<td></td>
</tr>
<tr>
<td>derived engineering</td>
<td></td>
</tr>
<tr>
<td>derived parametric</td>
<td></td>
</tr>
<tr>
<td>derived temporal</td>
<td></td>
</tr>
<tr>
<td>compound</td>
<td>A.9</td>
</tr>
</tbody>
</table>