CONSOLIDATED VERSION

Medical device software – Software life cycle processes
REDLINE VERSION

Medical device software – Software life cycle processes
CONTENTS

FOREWORD .. 4
INTRODUCTION .. 6

INTRODUCTION to Amendment 1 ... 8

1 Scope ... 9
 1.1 * Purpose .. 9
 1.2 * Field of application ... 9
 1.3 Relationship to other standards .. 9
 1.4 Compliance ... 9

2 * Normative references .. 10

3 * Terms and definitions .. 10

4 * General requirements .. 15
 4.1 * Quality management system ... 15
 4.2 * RISK MANAGEMENT .. 16
 4.3 * Software safety classification ... 16
 4.4 * LEGACY SOFTWARE .. 18

5 Software development PROCESS ... 19
 5.1 * Software development planning .. 19
 5.2 * Software requirements analysis .. 21
 5.3 * Software ARCHITECTURAL design .. 23
 5.4 * Software detailed design .. 24
 5.5 * SOFTWARE UNIT implementation and verification .. 25
 5.6 * Software integration and integration testing ... 25
 5.7 * SOFTWARE SYSTEM testing ... 27
 5.8 * Software release ... 28

6 Software maintenance PROCESS .. 29
 6.1 * Establish software maintenance plan .. 29
 6.2 * Problem and modification analysis .. 30
 6.3 * Modification implementation ... 31

7 * Software RISK MANAGEMENT PROCESS ... 31
 7.1 * Analysis of software contributing to hazardous situations .. 31
 7.2 RISK CONTROL measures .. 32
 7.3 VERIFICATION of RISK CONTROL measures ... 32
 7.4 RISK MANAGEMENT of software changes .. 33

8 * Software configuration management PROCESS .. 33
 8.1 * Configuration identification .. 33
 8.2 * Change control .. 33
 8.3 * Configuration status accounting .. 34

9 * Software problem resolution PROCESS ... 34
 9.1 Prepare PROBLEM REPORTS ... 34
 9.2 Investigate the problem .. 35
 9.3 Advise relevant parties ... 35
 9.4 Use change control process ... 35
 9.5 Maintain records .. 35
 9.6 Analyse problems for trends ... 35
 9.7 Verify software problem resolution .. 35
9.8 Test documentation contents ... 36
Annex A (informative) Rationale for the requirements of this standard 37
Annex B (informative) Guidance on the provisions of this standard 40
Annex C (informative) Relationship to other standards 58
Annex D (informative) Implementation ... 84
Bibliography ... 86
Index of defined terms ... 88

Figure 1 – Overview of software development PROCESSES and ACTIVITIES 7
Figure 2 – Overview of software maintenance PROCESSES and ACTIVITIES 7
Figure 3 – Assigning software safety classification 16
Figure B.2 – Pictorial representation of the relationship of HAZARD, sequence of events, HAZARDOUS SITUATION, and HARM – from ISO 14971:2007 Annex E 44
Figure B.1 – Example of partitioning of SOFTWARE ITEMS 46
Figure C.1 – Relationship of key MEDICAL DEVICE standards to IEC 62304 59
Figure C.2 – Software as part of the V-model .. 62
Figure C.3 – Application of IEC 62304 with IEC 61010-1 72

Table A.1 – Summary of requirements by software safety class 39
Table B.1 – Development (model) strategies as defined in ISO/IEC 12207 41
Table C.1 – Relationship to ISO 13485:2003 ... 60
Table C.2 – Relationship to ISO 14971:2000 2007 ... 61
Table C.3 – Relationship to IEC 60601-1 .. 64
Table C.4 – Relationship to IEC 60601-4 ... 68
Table C.5 – Relationship to ISO/IEC 12207 .. 74
Table D.1 – Checklist for small companies without a certified QMS 85
INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL DEVICE SOFTWARE –
SOFTWARE LIFE CYCLE PROCESSES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereinafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

DISCLAIMER

This Consolidated version is not an official IEC Standard and has been prepared for user convenience. Only the current versions of the standard and its amendment(s) are to be considered the official documents.

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendment 1. Additions and deletions are displayed in red, with deletions being struck through. A separate Final version with all changes accepted is available in this publication.

International Standard IEC 62304 has been prepared by a joint working group of subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC technical committees 62A, 60601, 60601-1, and 60601-1-1.

committee 62: Electrical equipment in medical practice and ISO Technical Committee 210, Quality management and corresponding general aspects for MEDICAL DEVICES. Table C.5 was prepared by ISO/IEC JTC 1/SC 7, Software and system engineering.

It is published as a dual logo standard.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:

- requirements and definitions: in roman type;
- informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type;
- terms used throughout this standard that have been defined in Clause 3 and also given in the index: in small capitals.

An asterisk (*) as the first character of a title or at the beginning of a paragraph indicates that there is guidance related to that item in Annex B.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

NOTE The attention of National Committees is drawn to the fact that equipment MANUFACTURERS and testing organizations may need a transitional period following publication of a new, amended or revised IEC or ISO publication in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests. It is the recommendation of the committee that the content of this publication be adopted for mandatory implementation nationally not earlier than 3 years from the date of publication.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

Software is often an integral part of MEDICAL DEVICE technology. Establishing the SAFETY and effectiveness of a MEDICAL DEVICE containing software requires knowledge of what the software is intended to do and demonstration that the use of the software fulfils those intentions without causing any unacceptable RISKS.

This standard provides a framework of life cycle PROCESSES with ACTIVITIES and TASKS necessary for the safe design and maintenance of MEDICAL DEVICE SOFTWARE. This standard provides requirements for each life cycle PROCESS. Each life cycle PROCESS consists of a set of ACTIVITIES, with most ACTIVITIES further divided into consisting of a set of TASKS.

As a basic foundation it is assumed that MEDICAL DEVICE SOFTWARE is developed and maintained within a quality management system (see 4.1) and a RISK MANAGEMENT system (see 4.2). The RISK MANAGEMENT PROCESS is already very well addressed by the International Standard ISO 14971. Therefore IEC 62304 makes use of this advantage simply by a normative reference to ISO 14971. Some minor additional RISK MANAGEMENT requirements are needed for software, especially in the area of identification of contributing software factors related to HAZARDS. These requirements are summarized and captured in Clause 7 as the software RISK MANAGEMENT PROCESS.

Whether software is a contributing factor to a HAZARD HAZARDOUS SITUATION is determined during the HAZARD identification ACTIVITY of the RISK MANAGEMENT PROCESS. HAZARDS HAZARDOUS SITUATIONS that could be indirectly caused by software (for example, by providing misleading information that could cause inappropriate treatment to be administered) need to be considered when determining whether software is a contributing factor. The decision to use software to control RISK is made during the RISK CONTROL ACTIVITY of the RISK MANAGEMENT PROCESS. The software RISK MANAGEMENT PROCESS required in this standard has to be embedded in the device RISK MANAGEMENT PROCESS according to ISO 14971.

The software development PROCESS consists of a number of ACTIVITIES. These ACTIVITIES are shown in Figure 1 and described in Clause 5. Because many incidents in the field are related to service or maintenance of MEDICAL DEVICE SYSTEMS including inappropriate software updates and upgrades, the software maintenance PROCESS is considered to be as important as the software development PROCESS. The software maintenance PROCESS is very similar to the software development PROCESS. It is shown in Figure 2 and described in Clause 6.
This standard identifies two additional processes considered essential for developing safe medical device software. They are the software configuration management process (Clause 8) and the software problem resolution process (Clause 9).

Amendment 1 updates the standard to add requirements to deal with legacy software, where the software design is prior to the existence of the current version, to assist manufacturers who must show compliance to the standard to meet European Directives. Software safety
classification changes include clarification of requirements and updating of the software safety classification to include a risk-based approach.

This standard does not specify an organizational structure for the MANUFACTURER or which part of the organization is to perform which PROCESS, ACTIVITY, or TASK. This standard requires only that the PROCESS, ACTIVITY, or TASK be completed to establish compliance with this standard.

This standard does not prescribe the name, format, or explicit content of the documentation to be produced. This standard requires documentation of TASKS, but the decision of how to package this documentation is left to the user of the standard.

This standard does not prescribe a specific life cycle model. The users of this standard are responsible for selecting a life cycle model for the software project and for mapping the PROCESSES, ACTIVITIES, and TASKS in this standard onto that model.

Annex A provides rationale for the clauses of this standard. Annex B provides guidance on the provisions of this standard.

For the purposes of this standard:

- “shall” means that compliance with a requirement is mandatory for compliance with this standard;
- “should” means that compliance with a requirement is recommended but is not mandatory for compliance with this standard;
- “may” is used to describe a permissible way to achieve compliance with a requirement;
- “establish” means to define, document, and implement; and
- where this standard uses the term “as appropriate” in conjunction with a required PROCESS, ACTIVITY, TASK or output, the intention is that the MANUFACTURER shall use the PROCESS, ACTIVITY, TASK or output unless the MANUFACTURER can document a justification for not so doing.

INTRODUCTION to Amendment 1

The first edition of IEC 62304 was published in 2006. This amendment is intended to add requirements to deal with LEGACY SOFTWARE, where the software design is prior to the existence of the current version, to assist manufacturers who must show compliance to the standard to meet European Directives. Software safety classification changes needed for this amendment include clarification of requirements and updating of the software safety classification to include a risk-based approach. Work is continuing in parallel to develop the second edition of IEC 62304.
1 Scope

1.1 * Purpose

This standard defines the life cycle requirements for MEDICAL DEVICE SOFTWARE. The set of PROCESSES, ACTIVITIES, and TASKS described in this standard establishes a common framework for MEDICAL DEVICE SOFTWARE life cycle PROCESSES.

1.2 * Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE when software is itself a MEDICAL DEVICE or when software is an embedded or integral part of the final MEDICAL DEVICE.

NOTE 1 This standard can be used in the development and maintenance of software that is itself a medical device. However, additional development activities are needed at the system level before this type of software can be placed into service. These system activities are not covered by this standard, but can be found in IEC 82304-1\(^1\) [22].

This standard describes PROCESSES that are intended to be applied to software which executes on a processor or which is executed by other software (for example an interpreter) which executes on a processor.

This standard applies regardless of the persistent storage device(s) used to store the software (for example: hard disk, optical disk, permanent or flash memory).

This standard applies regardless of the method of delivery of the software (for example: transmission by network or email, optical disk, flash memory or EEPROM). The method of software delivery itself is not considered MEDICAL DEVICE SOFTWARE.

This standard does not cover validation and final release of the MEDICAL DEVICE, even when the MEDICAL DEVICE consists entirely of software.

NOTE 2 If a medical device incorporates embedded software intended to be executed on a processor, the requirements of this standard apply to the software, including the requirements concerning software of unknown provenance (see 8.1.2).

NOTE 3 Validation and other development activities are needed at the system level before the software and medical device can be placed into service. These system activities are not covered by this standard, but can be found in related product standards (e.g., IEC 60601-1, IEC 82304-1, etc.).

1.3 Relationship to other standards

This MEDICAL DEVICE SOFTWARE life cycle standard is to be used together with other appropriate standards when developing a MEDICAL DEVICE. Annex C shows the relationship between this standard and other relevant standards.

1.4 Compliance

Compliance with this standard is defined as implementing all of the PROCESSES, ACTIVITIES, and TASKS identified in this standard in accordance with the software safety class.

\(^1\) In preparation.
NOTE The software safety class assigned to each requirement are identified in the normative text following the requirement.

Compliance is determined by inspection of all documentation required by this standard including the RISK MANAGEMENT FILE, and assessment of the PROCESSES, ACTIVITIES and TASKS required for the software safety class. See Annex D.

NOTE 1 This assessment could be carried out by internal or external audit.

NOTE 2 Although the specified PROCESSES, ACTIVITIES, and TASKS are performed, flexibility exists in the methods of implementing these PROCESSES and performing these ACTIVITIES and TASKS.

NOTE 3 Where any requirements contain "as appropriate" and were not performed, documentation for the justification is necessary for this assessment.

NOTE 4 The term "conformance" is used in ISO/IEC 12207 where the term "compliance" is used in this standard.

NOTE 5 For compliance of LEGACY SOFTWARE see 4.4.

2 * Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14971, Medical devices – Application of risk management to medical devices.

3 * Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 ACTIVITY
a set of one or more interrelated or interacting TASKS

3.2 ANOMALY
any condition that deviates from the expected based on requirements specifications, design documents, standards, etc. or from someone’s perceptions or experiences. ANOMALIES may be found during, but not limited to, the review, test, analysis, compilation, or use of MEDICAL DEVICE SOFTWARE PRODUCTS or applicable documentation

NOTE Based on [IEEE 1044:1993, definition 3.1].

3.3 ARCHITECTURE
organizational structure of a SYSTEM or component

[IEEE 610.12:1990]

3.4 CHANGE REQUEST
a documented specification of a change to be made to a MEDICAL DEVICE SOFTWARE PRODUCT

3.5 CONFIGURATION ITEM
entity that can be uniquely identified at a given reference point

3.6 DELIVERABLE
required result or output (includes documentation) of an ACTIVITY or TASK
3.7 EVALUATION
A systematic determination of the extent to which an entity meets its specified criteria

3.8 HARM
Physical injury, damage, or both to the health of people or damage to property or the environment

3.9 HAZARD
Potential source of HARM

3.10 MANUFACTURER
Natural or legal person with responsibility for designing, manufacturing, packaging, or labelling a MEDICAL DEVICE; assembling a SYSTEM; or adapting a MEDICAL DEVICE before it is placed on the market and/or put into service, regardless of whether these operations are carried out by that person or by a third party on that person’s behalf

NOTE 1 Attention is drawn to the fact that the provisions of national or regional regulations can apply to the definition of manufacturer.

NOTE 2 For a definition of labelling, see ISO 13485:2003, definition 3.6.

[ISO 14971:2000 2007, 2.6 2.8]

3.11 MEDICAL DEVICE
Any instrument, apparatus, implement, machine, appliance, implant, in vitro reagent or calibrator, software, material or other similar or related article, intended by the MANUFACTURER to be used, alone or in combination, for human beings for one or more of the specific purpose(s) of
– diagnosis, prevention, monitoring, treatment or alleviation of disease,
– diagnosis, monitoring, treatment, alleviation of or compensation for an injury,
– investigation, replacement, modification, or support of the anatomy or of a physiological PROCESS,
– supporting or sustaining life,
– control of conception,
– disinfection of MEDICAL DEVICES,
– providing information for medical purposes by means of in vitro examination of specimens derived from the human body, and which does not achieve its primary intended action in or on the human body by pharmacological, immunological or metabolic means, but which may be assisted in its function by such means

NOTE 1 This definition has been developed by the Global Harmonization Task Force (GHTF). See bibliographic reference [15] (in ISO 13485:2003).

[ISO 13485:2003, definition 3.7]

NOTE 2 Some differences can occur in the definitions used in regulations of each country.

NOTE 3 In conjunction with IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012 the term “medical device” assumes the same meaning as ME EQUIPMENT or ME SYSTEM (which are defined terms of IEC 60601-1).
3.12 MEDICAL DEVICE SOFTWARE
SOFTWARE SYSTEM that has been developed for the purpose of being incorporated into the MEDICAL DEVICE being developed or that is intended for use as a MEDICAL DEVICE in its own right.

NOTE This includes a MEDICAL DEVICE software product, which then is a MEDICAL DEVICE in its own right.

3.13 PROBLEM REPORT
a record of actual or potential behaviour of a MEDICAL DEVICE SOFTWARE PRODUCT that a user or other interested person believes to be unsafe, inappropriate for the intended use or contrary to specification.

NOTE 1 This standard does not require that every PROBLEM REPORT results in a change to the MEDICAL DEVICE SOFTWARE PRODUCT. A MANUFACTURER can reject a PROBLEM REPORT as a misunderstanding, error or insignificant event.

NOTE 2 A PROBLEM REPORT can relate to a released MEDICAL DEVICE SOFTWARE PRODUCT or to a MEDICAL DEVICE SOFTWARE PRODUCT that is still under development.

NOTE 3 This standard requires the MANUFACTURER to perform extra decision making steps (see Clause 6) for a PROBLEM REPORT relating to a released product to ensure that regulatory actions are identified and implemented.

3.14 PROCESS
a set of interrelated or interacting ACTIVITIES that transform inputs into outputs

[ISO 9000:2000, definition 3.4.1]

NOTE The term “ACTIVITIES” covers use of resources.

3.15 REGRESSION TESTING
the testing required to determine that a change to a SYSTEM component has not adversely affected functionality, reliability or performance and has not introduced additional defects.

3.16 RISK
combination of the probability of occurrence of HARM and the severity of that HARM

3.17 RISK ANALYSIS
systematic use of available information to identify HAZARDS and to estimate the RISK

3.18 RISK CONTROL
PROCESS in which decisions are made and RISKS are reduced to, or maintained within, specified levels

3.19 RISK MANAGEMENT
systematic application of management policies, procedures, and practices to the TASKS of analyzing, evaluating, and controlling RISK

[ISO 14971:2000 2007, 2.16, modified – The phrase "and monitoring" has been removed]
3.20 RISK MANAGEMENT FILE
set of records and other documents, not necessarily contiguous, that are produced by a RISK MANAGEMENT PROCESS

3.21 SAFETY
freedom from unacceptable RISK

3.22 SECURITY
protection of information and data so that unauthorized people or systems cannot read or modify them, and so that authorized persons or systems are not denied access to them

3.23 SERIOUS INJURY
injury or illness that directly or indirectly:

a) is life threatening,
b) results in permanent impairment of a body function or permanent damage to a body structure, or
c) necessitates medical or surgical intervention to prevent permanent impairment of a body function or permanent damage to a body structure

NOTE Permanent impairment means an irreversible impairment or damage to a body structure or function excluding trivial impairment or damage.

3.24 SOFTWARE DEVELOPMENT LIFE CYCLE MODEL
conceptual structure spanning the life of the software from definition of its requirements to its release for manufacturing, which:

– identifies the PROCESS, ACTIVITIES and TASKS involved in development of a MEDICAL DEVICE SOFTWARE PRODUCT,

– describes the sequence of and dependency between ACTIVITIES and TASKS, and

– identifies the milestones at which the completeness of specified DELIVERABLES is verified.

NOTE Based on ISO/IEC 12207:1995, definition 3.11

3.25 SOFTWARE ITEM
any identifiable part of a computer program, i.e., source code, object code, control code, control data, or a collection of these items

NOTE Three terms identify the software decomposition. The top level is the SOFTWARE SYSTEM. The lowest level that is not further decomposed is the SOFTWARE UNIT. All levels of composition, including the top and bottom levels, can be called SOFTWARE ITEMS. A SOFTWARE SYSTEM, then, is composed of one or more SOFTWARE ITEMS, and each SOFTWARE ITEM is composed of one or more SOFTWARE UNITS or decomposable SOFTWARE ITEMS. The responsibility is left to the MANUFACTURER to provide the definition and granularity of the SOFTWARE ITEMS and SOFTWARE UNITS.

3.26 SOFTWARE PRODUCT
set of computer programs, procedures, and possibly associated documentation and data
Not used

3.27 SOFTWARE SYSTEM
integrated collection of SOFTWARE ITEMS organized to accomplish a specific function or set of functions

3.28 SOFTWARE UNIT
SOFTWARE ITEM that is not subdivided into other items

NOTE SOFTWARE UNITS can be used for the purpose of software configuration management or testing. The granularity of SOFTWARE UNITS is defined by the MANUFACTURER (see B.3).

3.29 SOUP
software of unknown provenance (acronym)
SOFTWARE ITEM that is already developed and generally available and that has not been developed for the purpose of being incorporated into the MEDICAL DEVICE (also known as "off-the-shelf software") or SOFTWARE ITEM previously developed for which adequate records of the development PROCESSES are not available

NOTE A MEDICAL DEVICE SOFTWARE SYSTEM in itself cannot be claimed to be SOUP.

3.30 SYSTEM
integrated composite consisting of one or more of the PROCESSES, hardware, software, facilities, and people, that provides a capability to satisfy a stated need or objective

3.31 TASK
a single piece of work that needs to be done

3.32 TRACEABILITY
degree to which a relationship can be established between two or more products of the development PROCESS

[IEEE 610.12:1990]

NOTE Requirements, architecture, risk control measures, etc. are examples of deliverables of the development PROCESS.

3.33 VERIFICATION
confirmation through provision of objective evidence that specified requirements have been fulfilled

NOTE 1 “Verified” is used to designate the corresponding status.

NOTE 2 In design and development, VERIFICATION concerns the PROCESS of examining the result of a given ACTIVITY to determine conformity with the stated requirement for that ACTIVITY.
3.34 VERSION
identified instance of a CONFIGURATION ITEM

NOTE 1 Modification to a VERSION of a MEDICAL DEVICE SOFTWARE PRODUCT, resulting in a new VERSION, requires software configuration management action.

3.35 HAZARDOUS SITUATION
circumstance in which people, property or the environment are exposed to one or more HAZARD(S)

3.36 LEGACY SOFTWARE
MEDICAL DEVICE SOFTWARE which was legally placed on the market and is still marketed today but for which there is insufficient objective evidence that it was developed in compliance with the current version of this standard

3.37 RELEASE
particular VERSION of a CONFIGURATION ITEM that is made available for a specific purpose

3.38 RESIDUAL RISK
RISK remaining after RISK CONTROL measures have been taken

NOTE 2 ISO/IEC Guide 51:1999, definition 3.9 uses the term “protective measures” rather than “RISK CONTROL measures.” However, in the context of this International Standard, “protective measures” are only one option for controlling risk as described in 6.2 [of ISO 14971:2007].

[SOURCE: ISO 14971:2007, 2.15].

3.39 RISK ESTIMATION
PROCESS used to assign values to the probability of occurrence of HARM and the severity of that HARM

[SOURCE: ISO 14971:2007 2.20]

3.40 RISK EVALUATION
PROCESS of comparing the estimated RISK against given RISK criteria to determine the acceptability of the RISK

[SOURCE: ISO 14971:2007 2.21]

4 * General requirements

4.1 * Quality management system

The MANUFACTURER of MEDICAL DEVICE SOFTWARE shall demonstrate the ability to provide MEDICAL DEVICE SOFTWARE that consistently meets customer requirements and applicable regulatory requirements.