Akustik – Mätning av bullerabsorberande egenskaper hos vägytor på plats – Del 1: Metod som täcker större yta (ISO 13472-1:2022, IDT)

Den här standarden kan hjälpa dig att effektivisera och kvalitetssäkra ditt arbete. SIS har fler tjänster att erbjuda dig för att underlätta tillämpningen av standarder i din verksamhet.

SIS Abonnemang
Snabb och enkel åtkomst till gällande standard med SIS Abonnemang, en prenumerationstjänst genom vilken din organisation får tillgång till all världens standarder, senaste uppdateringarna och där hela din organisation kan ta del av innehållet i prenumerationen.

Utbildning, event och publikationer
Vi erbjuder även utbildningar, rådgivning och event kring våra mest sålda standarder och frågor kopplade till utveckling av standarder. Vi ger också ut handböcker som underlätter ditt arbete med att använda en specifik standard.

Vill du delta i ett standardiseringsprojekt?
Genom att delta som expert i någon av SIS 300 tekniska kommittéer inom CEN (europeisk standardisering) och/eller ISO (internationell standardisering) har du möjlighet att påverka standardiseringsarbetet i frågor som är viktiga för din organisation. Välkommen att kontakta SIS för att få veta mer!

Kontakt
Skriv till kundservice@sis.se, besök sis.se eller ring 08 - 555 523 10

© Copyright Svenska institutet för standarder, Stockholm, Sweden. All rights reserved. The copyright and use of this product is governed by the end-user licence agreement which you automatically will be bound to when using the product. You will find the licence at sis.se/enduserlicenseagreement.

Upplysningar om sakinhålet i standarden lämnas av Svenska institutet för standarder, telefon 08 - 555 520 00. Standarder kan beställas hos SIS som även lämnar allmänna upplysningar om svensk och utländsk standard.

Standarden är framtagen av kommittén för Akustik och buller, SIS/TK 110.

Fastställd: 2022-01-11
ICS: 17.140.30; 93.080.20

Denna standard ersätter SS-ISO 13472-1, utgåva 1

The International Standard ISO 13472-1:2022 has the status of a Swedish Standard. This document contains the official English version of ISO 13472-1:2022.

This standard supersedes the SS-ISO 13472-1, edition 1
LÄSANVISNINGAR FÖR STANDARDER
I dessa anvisningar behandlas huvudprinciperna för hur regler och yttre begränsningar anges i standardiseringsprodukter.

Krav
Ett krav är ett uttryck i ett dokuments innehåll som anger objektivt verifierbara kriterier som ska uppfyllas och från vilka ingen avvikelse tillåts om efterlevnad av dokumentet ska kunna åberopas. Krav uttrycks med hjälpverbet ska (eller ska inte för förbud).

Rekommendation
En rekommendation är ett uttryck i ett dokuments innehåll som anger en valmöjlighet eller ett tillvägagängssätt som bedöms vara särskilt lämpligt utan att nödvändigtvis nämna eller utesluta andra. Rekommendationer uttrycks med hjälpverbet bör (eller bör inte för avrådanden).

Instruktion
Instruktioner anges i imperativ form och används för att ange hur något görs eller utförs. De kan underordnas en annan regel, såsom ett krav eller en rekommendation. De kan även användas självständigt, och är då att betrakta som krav.

Förklaring

READING INSTRUCTIONS FOR STANDARDS
These instructions cover the main principles for the use of provisions and external constraints in standardization deliverables.

Requirement
A requirement is an expression, in the content of a document, that conveys objectively verifiable criteria to be fulfilled, and from which no deviation is permitted if conformance with the document is to be claimed. Requirements are expressed by the auxiliary shall (or shall not for prohibition).

Recommendation
A recommendation is an expression, in the content of a document, that conveys a suggested possible choice or course of action deemed to be particularly suitable, without necessarily mentioning or excluding others. Recommendations are expressed by the auxiliary should (or should not for dissuasion).

Instruction
An instruction is expressed in the imperative mood and is used in order to convey an action to be performed. It can be subordinated to another provision, such as a requirement or a recommendation. It can also be used independently and is then to be regarded as a requirement.

Statement
A statement is an expression, in the content of a document, that conveys information. A statement can express permission, possibility or capability. Permission is expressed by the auxiliary may (its opposite being need not). Possibility and capability are expressed by the auxiliary can (its opposite being cannot).
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>1 Scope</td>
<td></td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Summary of the method</td>
<td>3</td>
</tr>
<tr>
<td>4.1 General principle</td>
<td>3</td>
</tr>
<tr>
<td>4.2 Signal separation technique</td>
<td>4</td>
</tr>
<tr>
<td>4.3 Test method</td>
<td>5</td>
</tr>
<tr>
<td>5 Test system</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Components of the test system</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Sound source</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Test signal</td>
<td>6</td>
</tr>
<tr>
<td>6 Data processing</td>
<td>6</td>
</tr>
<tr>
<td>6.1 Calibration</td>
<td>6</td>
</tr>
<tr>
<td>6.2 Sampling frequency</td>
<td>7</td>
</tr>
<tr>
<td>6.3 Temporal separation of the signals</td>
<td>7</td>
</tr>
<tr>
<td>7 Positioning of the equipment</td>
<td>8</td>
</tr>
<tr>
<td>7.1 Maximum sampled area</td>
<td>8</td>
</tr>
<tr>
<td>7.2 Positioning of the measuring equipment</td>
<td>8</td>
</tr>
<tr>
<td>7.3 Reflecting objects</td>
<td>9</td>
</tr>
<tr>
<td>7.4 Background noise</td>
<td>9</td>
</tr>
<tr>
<td>7.5 Safety considerations</td>
<td>10</td>
</tr>
<tr>
<td>8 Road surface and meteorological conditions</td>
<td>10</td>
</tr>
<tr>
<td>8.1 Condition of the road surface</td>
<td>10</td>
</tr>
<tr>
<td>8.2 Wind</td>
<td>11</td>
</tr>
<tr>
<td>8.3 Temperature</td>
<td>11</td>
</tr>
<tr>
<td>9 Measurement procedure</td>
<td>11</td>
</tr>
<tr>
<td>10 Measurement uncertainty</td>
<td>12</td>
</tr>
<tr>
<td>11 Test report</td>
<td>14</td>
</tr>
<tr>
<td>Annex A (normative) Radius of the maximum sampled area</td>
<td>15</td>
</tr>
<tr>
<td>Annex B (normative) Reference measurement and correction procedure</td>
<td>16</td>
</tr>
<tr>
<td>Annex C (informative) Physical principle of the measurement</td>
<td>17</td>
</tr>
<tr>
<td>Annex D (informative) Example of a test report</td>
<td>19</td>
</tr>
<tr>
<td>Annex E (informative) Sound absorption coefficient at non-normal incidence</td>
<td>23</td>
</tr>
<tr>
<td>Annex F (normative) Correction of small time shifts in the direct impulse response between the free-field measurement and the reflected measurement</td>
<td>25</td>
</tr>
<tr>
<td>Bibliography</td>
<td>29</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 43, Acoustics, Subcommittee SC 1, Noise.

This second edition cancels and replaces the first edition (ISO 13472-1:2002), which has been technically revised.

The main changes are as follows:

— Reference to IEC 60651 has been replaced with reference to IEC 61672-1;

— Reference to ISO 18233 has been added, in order to have a standardized description of MLS and ESS signals. Two references on ESS have been added to the Bibliography;

— Requirements of a precision ±0,005 m on the source-microphone distance has been released to ±0,01 m due to the correcting capability offered by the accurate alignment procedure in the new Annex F;

— A procedure, taken from ISO 11819-2, to check the road surface dryness has been specified in 8.1;

— Specifications of the time window have been improved;

— Former Annex D on MLS signals has been deleted (replaced by a reference to ISO 18233);

— Former Annex G on correction of small time shifts has been replaced with the new Annex F, specifying an accurate alignment procedure; Annex F is now normative.

A list of all parts in the ISO 13472 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

This document describes a test method for measuring, in situ, the sound absorption coefficient of road surfaces as a function of frequency under normal incidence.

This method provides a means of evaluating the sound absorption characteristics of a road surface without damaging the surface. It is intended to be used during road construction, road maintenance and other traffic noise studies. It may also be used to qualify the absorption characteristics of road surfaces used for vehicle and tyre testing. However, the standard uncertainty is limited to 0.05.

This method is based on free-field propagation of the test signal from the source to the road surface and back to the receiver, and covers an area of approximately 3 m² and a frequency range, in one-third-octave bands, from 250 Hz to 4 kHz (see IEC 61260).

To complement this method, a spot method (see ISO 13472-2) is available. This method is based on the transmission of the test signal from the source to the road surface and back to the receiver inside a tube and covers an area of approximately 0.1 m² and a frequency range, in one-third-octave bands, from 315 Hz to 2 kHz.

Both methods should give the same results in the frequency range from 315 Hz to 2 kHz.

They are both applicable also to acoustic materials other than road surfaces.

The measurement results of this method are comparable with the results of impedance tube methods, performed on bore cores taken from the surface (e.g. ISO 10534-1 and ISO 10534-2).

The measurement results of this method are in general not comparable with the results of the reverberation room method (see ISO 354), because the method described in this document uses a directional sound field, while the reverberation room method assumes a diffuse sound field.

See Annex E for information about sound absorption coefficient under non-normal incidence.
Acoustics — Measurement of sound absorption properties of road surfaces in situ —

Part 1: Extended surface method

1 Scope

This document describes a test method for measuring in situ the sound absorption coefficient of road surfaces as a function of frequency in the range from 250 Hz to 4 kHz.

Normal incidence is assumed. However, the test method can be applied at oblique incidence although with some limitations (see Annex F). The test method is intended for the following applications:

— determination of the sound absorption properties of road surfaces in actual use;
— comparison of sound absorption design specifications of road surfaces with actual performance data of the surface after completion of the construction work.

The complex reflection factor can also be determined by this method.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10534-1, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 1: Method using standing wave ratio

ISO 10534-2, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 2: Transfer-function method

IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/

3.1 angle of incidence

angle between the normal to the surface under test and the direction of the sound wave impinging on the test surface
3.2 **sound power reflection factor**

Q_W

fraction of the impinging sound power which is reflected from the surface material of the road (see 3.4)

Note 1 to entry: A spherical sound wave incident on the sample surface is assumed.

3.3 **sound absorption coefficient**

α

ratio of the sound power entering the surface of the test object (without return) to the incident sound power:

$$a = \frac{Q}{W}$$

3.4 **sound pressure reflection factor**

Q_p

complex ratio of the pressure amplitude of the reflected wave to the pressure amplitude of the incident wave at the surface of the road

Note 1 to entry: A spherical sound wave incident on the sample surface is assumed.

Note 2 to entry: This quantity is necessary in order to understand the correction procedure described in Annex B and formula (C.4). The sound power reflection factor is equal to the squared modulus of the sound pressure reflection factor: $Q_W(f) = |Q_p(f)|^2$.

3.5 **geometrical spreading factor**

attenuation of the magnitude of a sound pressure wave travelling from one point to another due to the spherical spreading

3.6 **plane of reference for the road surface**

hypothetical plane tangential to the majority of the elements of the surface under test

3.7 **maximum sampled area**

surface area, contained within the plane of reflection, which shall remain free of reflecting objects causing parasitic reflections

Note 1 to entry: See Annex A.

3.8 **background noise**

noise coming from sources other than the test signal

3.9 **signal-to-noise ratio**

S/N

difference between the level of the nominal useful signal and the level of the background noise at the moment of detection of the useful event

Note 1 to entry: The signal-to-noise ratio is given in decibels.

3.10 **impulse response**

time signal at the output of a system when a Dirac function is applied to the input

Note 1 to entry: The Dirac function, also called δ function, is the mathematical idealization of a signal infinitely short in time which carries a unit amount of energy.
3.11 transfer function
Fourier transform of the impulse response (3.10)

4 Summary of the method

4.1 General principle

A sound source driven by a signal generator is positioned above the surface to be tested and a microphone is located between the source and the surface. The measurement method is based on the assessment of the transfer function between the output of the signal generator and the output of the microphone. This transfer function is composed of two factors, one coming from the direct path (from the signal generator through the amplifier and loudspeaker to the microphone) and a second coming from the reflected path (from the signal generator through the amplifier, loudspeaker and surface under test to the microphone) (see Figure 1).

The overall impulse response containing the direct and reflected sound is measured in the time domain. This overall impulse response consists of the impulse response of the direct path and, after some delay due to the longer travelling distance, the impulse response of the reflected path.

With suitable time domain processing (e.g. signal subtraction and temporal separation, see 4.2), these responses can be separated. After a Fourier transform, the transfer functions of the direct path \(H_d(f) \) and of the reflected path \(H_r(f) \) are obtained. The ratio of the squared modulus of these transfer functions gives the sound power reflection factor \(Q_W(f) \); in order to account for the path length difference between the direct and reflected component, the above ratio is also multiplied by a factor \(K_r \) intended to compensate for the greater geometrical spreading of the reflected path, see Formula (2). Then, the sound absorption coefficient can be calculated from the sound power reflection factor \(Q_W(f) \) (see 3.3).

Taking into account also the factor \(K_r \) due to geometrical spreading, the sound absorption coefficient is computed as given by Formula (1):

\[
\alpha(f) = 1 - Q_W(f) = 1 - \frac{1}{K_r^2} \left| \frac{H_r(f)}{H_d(f)} \right|^2
\]

(1)

\[
K_r = \frac{d_s - d_m}{d_s + d_m}
\]

(2)

where

\(d_s \) is the distance between the sound source and the reference plane for the surface under test;

\(d_m \) is the distance between the microphone and the reference plane for the surface under test.

NOTE The complex reflection factor, necessary for propagation calculations or comparison of measurement results with theoretical calculations can be found as follows in Formula (3):

\[
Q_p(f) = \frac{1}{K_d} \frac{H_r(f)}{H_d(f)} \exp(\frac{i\pi}{2} \Delta t)
\]

(3)

where \(\Delta t \) is the time difference between arrival of the direct and the reflected impulses (see Annex C).

No special requirement is placed upon the signal source as long as it enables determination of the impulse response over the designated frequency interval (see also 5.2).