SVENSK STANDARD
SS-ISO 27956:2009

Vägfordon – Säkring av last i distributionsbilar – Krav och provningsmetoder (ISO 27956:2009, IDT)

Hitta rätt produkt och ett leveranssätt som passar dig

Standards
Genom att följa gällande standard både effektiviserar och säkrar du ditt arbete. Många standarder ingår dessutom ofta i paket.

Services

e-nav är vår online-tjänst som ger dig och dina kollegor tillgång till standarder ni valt att abonnera på dygnet runt. Med e-nav kan samma standard användas av flera personer samtidigt.

Leveranssätt
Du väljer hur du vill ha dina standarder levererade. Vi kan erhjuda dig dem på papper och som pdf.

Andra produkter

Matriser är en översikt på standarder och handböcker som bör lasas tillsammans. De finns på sis.se och ger dig en bra bild över hur olika produkter hör ihop.

Standardiseringsprojekt
Du kan påverka innehållet i framtida standarder genom att delta i någon av SIS ca 400 Tekniska Kommittéer.

Find the right product and the type of delivery that suits you

Standards
By complying with current standards, you can make your work more efficient and ensure reliability. Also, several of the standards are often supplied in packages.

Services
Subscription is the service that keeps you up to date with current standards when changes occur in the ones you have chosen to subscribe to. This ensures that you are always working with the right edition.

e-nav is our online service that gives you and your colleagues access to the standards you subscribe to 24 hours a day. With e-nav, the same standards can be used by several people at once.

Type of delivery
You choose how you want your standards delivered. We can supply them both on paper and as PDF files.

Other products
We have books that facilitate standards compliance. They make it easier to understand how compliance works and how this benefits you in your operation. We produce many publications of our own, and also act as retailers. This means that we have more than 500 unique titles for you to choose from. We also have technical reports, specifications and workshop agreements.

Matrices, listed at sis.se, provide an overview of which publications belong together.

Standardisation project
You can influence the content of future standards by taking part in one or other of SIS's 400 or so Technical Committees.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>3 Requirements</td>
<td>2</td>
</tr>
<tr>
<td>3.1 General requirements</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Partitioning system</td>
<td>2</td>
</tr>
<tr>
<td>3.3 Lashing points</td>
<td>4</td>
</tr>
<tr>
<td>4 Test methods</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Static load tests of the partitioning system</td>
<td>8</td>
</tr>
<tr>
<td>4.2 Testing of the strength of the lashing point</td>
<td>10</td>
</tr>
<tr>
<td>Bibliography</td>
<td>13</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 27956 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 12, Passive safety crash protection systems.
Road vehicles — Securing of cargo in delivery vans — Requirements and test methods

1 Scope

This International Standard applies to vehicle-relevant equipment for the securing of cargo in delivery vans with a gross vehicle mass up to 7,5 t. This International Standard specifies minimum requirements and test methods for securing cargo in a reliable and roadworthy way, in order to protect occupants against injuries caused by shifting cargo.

This International Standard deals with N1 vehicles and N2 vehicles up to 7,5 t in accordance with ECE classification\(^1\). For vehicles primarily designed for the transportation of cargo and derived from a passenger vehicle (M1), only the requirements concerning the partitioning system of this International Standard apply.

NOTE Extreme loads (e.g. vehicle impacts) that can occur during an accident are outside the scope of this International Standard.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1 **delivery van**
vehicle for the transport of cargo, of which the occupant compartment and loading space form one unit

2.2 **lashing point**
attachment part on the vehicle or an integrated device, to which **lashing devices** (2.3) can be connected in a form-fit manner and designed to transfer the lashing forces to the vehicle structure

NOTE An integrated device can be, for example, a ring, a loop, a tie-down, a hook, an eye, a lug, a hook-in edge, a thread connection, or rails.

2.3 **lashing device**
device that is designed to be attached to the **lashing points** (2.2) in order to secure the cargo on the vehicle and that consists of a tensioning device, a tensioning element and connections, if required

NOTE 1 A tensioning device can be, for example, a belt or a strap.

NOTE 2 A tensioning element can be, for example, a wrench, a ratchet, or a spanner.

NOTE 3 Connections can be, for example, a hook or an eyelet.

\(^1\) See Reference \[1\].
2.4 **partitioning system**
device that fully or partially separates the occupant compartment from the loading space

EXAMPLE Partition, bulkhead, grid.

2.5 **protection zone**
area behind each seating position, for which special requirements for the protection against shifting cargo apply, limited to the area of vertical longitudinal sections, symmetrical to the left and right of the relevant R-points, with a width of 544 mm per seat and extending over the entire height of the occupant compartment

NOTE 1 In the case of a bench, the protection zones between the R-points can overlap.

NOTE 2 See ISO 6549 for further information on R-points.

2.6 **roadworthy**
design concept aiming at excluding harm to occupants of a road vehicle travelling on public roads under normal conditions of operation, such as full braking, emergency braking, braking in a curve, fast lane changing and driving in a curve

NOTE The concept of “harm” includes injuries and fatality.

3 **Requirements**

3.1 **General requirements**

In order to prevent cargo from penetrating into the occupant compartment, delivery vans shall be equipped with adequate devices to protect the occupants against the cargo. Therefore, protection devices consisting of a **partitioning system** (see 2.4) and **lashing points** (see 2.2) shall be provided.

3.2 **Partitioning system**

The **partitioning system** (see 2.4) shall fully separate the occupant compartment from the loading space, in terms of width and height. In the case of a loading space above the occupant compartment, the partitioning system may be limited in height to the horizontal separation between the occupant compartment and that loading space. However, in the case of a vehicle having a driver seat only and no passenger seat, the partitioning system does not need to cover the entire width of the vehicle, provided that the driver's **protection zone** (see 2.5) is covered and, in addition, the driver seating position is sufficiently protected against laterally shifting cargo.

If there is a gap between the partitioning system and the vehicle body this shall not be more than 40 mm (see Figure 2) without removing the covering (or trim), if any. A larger value is permissible in the case of corrugations in the side walls, as well as in order to ensure proper deployment of curtain airbags, if fitted.

If the partitioning system consists of a grid or cargo net, a rigid test device (e.g. rod), having a front surface of \((50 \times 10)\) mm moved in longitudinal direction (parallel to the x-axis of the vehicle), shall not be able to pass such nets or grids in any orientation (rotation around the x-axis).

The strength of the entire partitioning system shall be tested in accordance with 4.1.2. The **protection zone(s)** (see 2.5) of the partitioning system shall withstand testing in accordance with 4.1.3.

Each point within the protection zones shall meet the requirements of a test using the type 2 plunger piston (see 4.1.3). If windows or a door are located in the protection zone, such elements shall also withstand this test. The window material may fracture, as long as the deformation criteria given below are met.
Permanent deformations of the partitioning system up to 300 mm (see Figure 1) are permissible when tested in accordance with 4.1.2 or 4.1.3, as long as such deformations do not cause sharp edges or other deformations which might result directly or indirectly in injuries to the occupants.

Figure 1 — Partitioning system

- 1 occupant compartment
- 2 partitioning system
- 3 loading space
- \(F \) test force

Figure 2 — Detail of partitioning system

- 1 partitioning system
- 2 corrugation in side wall
3.3 Lashing points

3.3.1 General

The loading space of delivery vans shall be equipped with lashing points.

3.3.2 Design

3.3.2.1 The geometry of the lashing points is not specified in this International Standard, but is decided by the vehicle manufacturer. Examples of typical designs of lashing points are shown in Figure 4. Whatever design is selected by the vehicle manufacturer, the clearance of the lashing point shall be such that it shall be possible to insert through the opening of the lashing point a cylindrical probe with a diameter, \(d_1 \), as specified in Table 1.

<table>
<thead>
<tr>
<th>Diameter of cylindrical probe to be inserted (d_1) mm</th>
<th>Gross vehicle mass (m_{GVM}) t</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>(5,0 < m_{GVM} \leq 7,5)</td>
</tr>
<tr>
<td>25</td>
<td>(2,5 < m_{GVM} \leq 5,0)</td>
</tr>
<tr>
<td>20</td>
<td>(m_{GVM} \leq 2,5)</td>
</tr>
</tbody>
</table>
3.3.2.2 The maximum cross section of the loop/ring must not be greater than 18 mm (see Figure 5). If the lashing point consists of a different design or other dimension, the vehicle manufacturer shall provide the adequate fastening elements.

![Figure 4 — Examples of typical designs of lashing points](image)

Key

- d_1: diameter of cylindrical probe to be inserted

![Figure 5 — Maximum cross section of lashing loops/rings](image)

Key

- a: Cross section ≤ 18 mm.

3.3.3 Strength of lashing points

3.3.3.1 Each lashing point shall be designed for one of the categories of nominal tension force, F_N, calculated in accordance with Table 2, and shall withstand the test force applied under any angle in the range between 0° and 60° to the vertical (see Figure 12) during the test specified in 4.2.1.

3.3.3.2 The strength of the lashing points is proven if the tests specified in 4.2.1 are passed.