

This European Standard was approved by CEN on 24 June 2007.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Foreword

This document (EN ISO 20776-2:2007) has been prepared by Technical Committee CEN/TC 140 “In vitro diagnostic medical devices”, the secretariat of which is held by DIN, in collaboration with Technical Committee ISO/TC 212 “Clinical laboratory testing and in vitro diagnostic test systems”.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2008, and conflicting national standards shall be withdrawn at the latest by January 2008.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Clinical laboratory testing and *in vitro* diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices —

Part 2: Evaluation of performance of antimicrobial susceptibility test devices

1 Scope

This part of ISO 20776 establishes acceptable performance criteria for antimicrobial susceptibility test (AST) devices that are used to determine minimum inhibitory concentrations (MIC) and/or interpretive category determinations of susceptible, intermediate and resistant (SIR) strains of bacteria to antimicrobial agents in medical laboratories. This part of ISO 20776 specifies requirements for AST devices (including diffusion test systems) and procedures for assessing performance of such devices. It defines how a performance evaluation of an AST device is to be conducted. This part of ISO 20776 has been developed to guide manufacturers in the conduct of performance evaluation studies.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 20776-1, *Clinical laboratory testing and in vitro diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices — Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Agreement of test results

3.1.1 category agreement

CA

agreement of SIR results between a breakpoint test or an MIC test and the reference method (ISO 20776-1)

Another representation of the concept:

$$\frac{N_{CA} \times 100}{N}$$
where

\[N_{CA} \] is the number of bacterial isolates with the same SIR category as the reference method category result;

\[N \] is the total number of bacterial isolates tested

NOTE The overall CA is expressed as a percentage.

3.1.2 essential agreement

EA

MIC result obtained with the AST device that is within plus or minus one doubling dilution step from the MIC value established with the reference method (ISO 20776-1)

Another representation of the concept:

\[\frac{N_{EA} \times 100}{N} \]

where

\[N_{EA} \] is the number of bacterial isolates with an EA;

\[N \] is the total number of bacterial isolates tested

NOTE The overall EA is expressed as a percentage.

3.2 antimicrobial susceptibility test device

AST device

device including all specified components used to obtain test results that allow SIR categorization of bacteria with specific antimicrobial agents

NOTE Specific components include inoculators, disposables and reagents, media, disks and readers. Non-specific components, such as swabs, pipettes and tubes, are not part of the device.

3.3 breakpoint

BP

specific values of parameters, such as MICs, on the basis of which bacteria can be assigned to the clinical categories “susceptible”, “intermediate” and “resistant”

NOTE For current interpretive breakpoints, reference can be made to the latest publications of organizations employing this reference method (e.g. CLSI and EUCAST).

3.3.1 susceptible

S

bacterial strain inhibited *in vitro* by a concentration of an antimicrobial agent that is associated with a high likelihood of therapeutic success

NOTE 1 Bacterial strains are categorized as susceptible by applying the appropriate breakpoints in a defined phenotypic test system.

NOTE 2 This breakpoint can be altered due to changes in circumstances (e.g. changes in commonly used drug dosages, emergence of new resistance mechanisms).