Akustik – Mätning av buller från accelererande fordon – Teknisk metod –
Del 1: Fordon av kategori M och N
(ISO 362-1:2007, IDT)

Measurement of noise emitted by accelerating road vehicles – Engineering method –
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1. Scope</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3. Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4. Symbols and abbreviated terms</td>
<td>7</td>
</tr>
<tr>
<td>5. Specification of the acceleration for vehicles of categories M1 and M2 having a maximum authorized mass not exceeding 3 500 kg, and of category N1</td>
<td>9</td>
</tr>
<tr>
<td>5.1 General</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Calculation of the acceleration</td>
<td>9</td>
</tr>
<tr>
<td>5.3 Calculation of the target acceleration</td>
<td>10</td>
</tr>
<tr>
<td>5.4 Calculation of the reference acceleration</td>
<td>10</td>
</tr>
<tr>
<td>5.5 Partial power factor k_P</td>
<td>11</td>
</tr>
<tr>
<td>6. Instrumentation</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Instruments for acoustical measurement</td>
<td>11</td>
</tr>
<tr>
<td>6.2 Instrumentation for speed measurements</td>
<td>11</td>
</tr>
<tr>
<td>6.3 Meteorological instrumentation</td>
<td>12</td>
</tr>
<tr>
<td>7. Acoustical environment, meteorological conditions and background noise</td>
<td>12</td>
</tr>
<tr>
<td>7.1 Test site</td>
<td>12</td>
</tr>
<tr>
<td>7.2 Meteorological conditions</td>
<td>13</td>
</tr>
<tr>
<td>7.3 Background noise</td>
<td>13</td>
</tr>
<tr>
<td>8. Test procedures</td>
<td>14</td>
</tr>
<tr>
<td>8.1 Microphone positions</td>
<td>14</td>
</tr>
<tr>
<td>8.2 Conditions of the vehicle</td>
<td>14</td>
</tr>
<tr>
<td>8.3 Operating conditions</td>
<td>17</td>
</tr>
<tr>
<td>8.4 Measurement readings and reported values</td>
<td>20</td>
</tr>
<tr>
<td>8.5 Measurement uncertainty</td>
<td>22</td>
</tr>
<tr>
<td>9. Test report</td>
<td>22</td>
</tr>
<tr>
<td>Annex A (informative) Technical background for development of vehicle noise test procedure based on in-use operation in urban conditions</td>
<td>24</td>
</tr>
<tr>
<td>Annex B (informative) Measurement uncertainty — Framework for analysis according to ISO Guide 98 (GUM)</td>
<td>44</td>
</tr>
<tr>
<td>Annex C (informative) Flowchart of the procedure for categories M1 and M2 having a maximum authorized mass not exceeding 3 500 kg, and category N1</td>
<td>47</td>
</tr>
<tr>
<td>Annex D (informative) Flowchart for vehicles of category M2 having a maximum authorized mass exceeding 3 500 kg, and categories M3, N2 and N3</td>
<td>51</td>
</tr>
<tr>
<td>Annex E (informative) Indoor test operation</td>
<td>52</td>
</tr>
<tr>
<td>Bibliography</td>
<td>55</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 362-1 was prepared by Technical Committee ISO/TC 43, Acoustics, Subcommittee SC 1, Noise.

This first edition of ISO 362-1, together with ISO 362-2, cancels and replaces ISO 362:1998 and ISO 7188:1994, which have been technically revised.

ISO 362 consists of the following parts, under the general title Measurement of noise emitted by accelerating road vehicles — Engineering method:

— Part 1: M and N categories
— Part 2: L category
Introduction

An extensive review was conducted of actual in-use vehicle operations, beginning with data from the TUV Automotive study in the early 1990s, and continuing with data developed through other committee members from 1996 through 2000. It includes nearly 100 vehicles operated on a variety of urban roads in Europe and Asia. The primary focus of the in-use measurements was to determine how vehicles are driven with a variety of vehicles, driving behaviours and traffic situations. The in-use behaviour determined from these studies was successfully correlated to urban traffic use in the United States by evaluation of the fuel economy test cycles used by the United States Environmental Protection Agency (USEPA). The resulting test specifications are therefore valid for all global urban use conditions.

The procedure defined here provides a measure of the sound pressure level from vehicles under controlled and repeatable conditions. The definitions have been made according to the needs of vehicle categories. In cases of vehicles other than very heavy trucks and buses, the working group found that attempts to conduct a partial load test as in actual use resulted in considerable run-to-run variability that significantly interfered with the repeatability and reproducibility of the test cycle. Therefore, two primary operating conditions (i.e. a wide-open-throttle acceleration phase, and a constant speed phase) were used to guarantee simplicity. The combination was found to be equivalent to the partial throttle and partial power (engine load) actually used.

As a further consequence of the investigation of the needs for an efficient test, it was decided to design a test which is independent of vehicle design and therefore safe and adaptable for future technologies, as well as for future traffic conditions. The test guarantees an excitation of all relevant noise sources, and the final test result will reflect a combination of these sources as a compromise between normal urban use and “worst case”.

In 2004, the given test for M and N category vehicles was evaluated for technical accuracy and practical considerations by test programmes carried out by the Japan Automobile Standards Internationalization Center (JASIC), the European Automotive Manufacturers Association (ACEA), and the Society of Automotive Engineers, Inc. (SAE) in the United States. Over 180 vehicles were included in these tests. The reports of these test programmes were considered prior to preparation of this part of ISO 362.

This part of ISO 362 was developed following demands for a new test procedure:

— “In the case of motor vehicles, other factors are also important such as the dominance of tyre noise above quite low speeds (50 km/h)” (1996 EU Green Paper).

— “A new measurement procedure should require that the major noise sources of a vehicle be measured” (2001 Noise Emission of Road Vehicles – I-INCE).
Measurement of noise emitted by accelerating road vehicles — Engineering method —

Part 1: M and N categories

1 Scope

This part of ISO 362 specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1 and L2, which are covered by ISO 9645, and vehicles of category L3, L4 and L5 covered by ISO 362-2.

The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic (see Annex A).

The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle.

The test method requires an acoustical environment that is only obtained in an extensive open space. Such conditions are usually provided for

— type approval measurements of a vehicle,
— measurements at the manufacturing stage, and
— measurements at official testing stations.

NOTE 1 The results obtained by this method give an objective measure of the noise emitted under the specified conditions of test. It is necessary to consider the fact that the subjective appraisal of the noise annoyance of different classes of motor vehicles is not simply related to the indications of a sound measurement system. As annoyance is strongly related to personal human perception, physiological human conditions, culture and environmental conditions, there is a large variation and it is therefore not useful as a parameter to describe a specific vehicle condition.

NOTE 2 Spot checks of vehicles chosen at random are rarely made in an ideal acoustical environment. If measurements are carried out on the road in an acoustical environment which does not fulfil the requirements stated in this International Standard, the results obtained can deviate appreciably from the results obtained using the specified conditions.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1176:1990, Road vehicles — Masses — Vocabulary and codes

ISO 2416:1992, Passenger cars — Mass distribution

ISO 5725:1994 (all parts), Accuracy (trueness and precision) of measurement methods and results
3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1176, ISO 2416 and the following apply.

3.1 Vehicle mass

3.1.1 kerb mass
complete shipping mass of a vehicle fitted with all equipment necessary for normal operation plus the mass of the following elements for M1, N1 and M2 having a maximum authorized mass not exceeding 3 500 kg:

— lubricants, coolant (if needed), washer fluid;
— fuel (tank filled to at least 90 % of the capacity specified by the manufacturer);
— other equipment if included as basic parts for the vehicle, such as spare wheel(s), wheel chocks, fire extinguisher(s), spare parts and tool kit

NOTE The definition of kerb mass may vary from country to country, but in this part of ISO 362 it refers to the definition contained in ISO 1176.

3.1.2 maximum authorized mass
kerb mass plus the maximum allowable payload

3.1.3 target mass
actual vehicle mass used during test as determined by Table 3

NOTE Test mass for N2 and N3 vehicles can be lower than the target mass due to axle-loading limitations.

3.1.4 test mass
actual vehicle mass used during test as determined by Table 3

NOTE Test mass for N2 and N3 vehicles can be lower than the target mass due to axle-loading limitations.

3.1.5 unladen vehicle mass
nominal mass of a complete N2, N3 or M2 vehicle having a maximum authorized mass greater than 3 500 kg, or an M3 vehicle as determined by the following conditions:

a) mass of the vehicle includes the bodywork and all factory-fitted equipment, electrical and auxiliary equipment for normal operation of the vehicle, including liquids, tools, fire extinguisher, standard spare parts, chocks and spare wheel, if fitted;

b) the fuel tank is filled to at least 90 % of rated capacity and the other liquid-containing systems (except those for used water) are filled to 100 % of the capacity specified by the manufacturer
3.1.6 **driver mass**
nominal mass of a driver

3.1.7 **mass in running order**
nominal mass of an N2, N3 or M2 vehicle having a maximum authorized mass greater than 3 500 kg, or an M3 vehicle as determined by the following conditions:

a) the mass is taken as the sum of the unladen vehicle mass and the driver's mass;

b) in the case of category M2 and M3 vehicles that include seating positions for additional crewmembers, their mass is incorporated in the same way and equal to that of the driver

NOTE The driver's mass is calculated in accordance with ISO 2416.

3.1.8 **maximum axle (group of axles) capacity**
permissible mass corresponding to the maximum mass to be carried by the axle (group of axles) as defined by the vehicle manufacturer, not exceeding the axle manufacturer's specifications

3.1.9 **unladen axle (group of axles) load**
actual mass carried by the axle (group of axles) in an unladen condition

NOTE The unladen vehicle mass is equal to the sum of the unladen axles (group of axles) load.

3.1.10 **extra loading**
mass which is to be added to the unladen vehicle mass

3.1.11 **laden axle (group of axles) load**
actual mass carried by the axle (group of axles) in a laden condition

3.2 **power-to-mass ratio index**
PMR
dimensionless quantity used for the calculation of acceleration according to the equation

\[
PMR = \frac{P_n}{m_t} \times 1000
\]

(1)

where

- \(P_n\) is the numerical value of engine power, expressed in kilowatts;
- \(m_t\) is the numerical value of the test mass, expressed in kilograms

3.3 **rated engine speed**
\(S\)
engine speed at which the engine develops its rated maximum net power as stated by the manufacturer

NOTE 1 If the rated maximum net power is reached at several engine speeds, \(S\) used in this part of ISO 362 is the highest engine speed at which the rated maximum net power is reached.

NOTE 2 ISO 80000-3 defines this term as "rated engine rotational frequency". The term "rated engine speed" was retained due to its common understanding by practitioners and its use in government regulations.
3.4 Vehicle categories

3.4.1 category L
motor vehicles with fewer than four wheels

3.4.1.1 category L1 and L2
mopeds

NOTE See ISO 9645 for further details.

3.4.1.2 category L3
two-wheeled motor vehicles with an engine cylinder capacity greater than 50 cm\(^3\) or maximum speed greater than 50 km/h

3.4.1.3 category L4
three-wheeled motor vehicles with an engine cylinder capacity greater than 50 cm\(^3\) or maximum speed greater than 50 km/h, the wheels being attached asymmetrically along the longitudinal vehicle axis

3.4.1.4 category L5
three-wheeled motor vehicles with an engine cylinder capacity greater than 50 cm\(^3\) or maximum speed greater than 50 km/h, having a gross vehicle mass rating not exceeding 1 000 kg and wheels attached symmetrically along the longitudinal vehicle axis

3.4.1.5 category L6
four-wheeled vehicles whose unladen mass is not more than 350 kg, not including the mass of the batteries in the case of electric vehicles, whose maximum design speed is not more than 45 km/h, and whose engine cylinder capacity does not exceed 50 cm\(^3\) for spark (positive) ignition engines, or whose maximum net power output does not exceed 4 kW in the case of other internal combustion engines, or whose maximum continuous rated power does not exceed 4 kW in the case of electric engines

3.4.1.6 category L7
four-wheeled vehicles, other than those classified as category L6, whose unladen mass is not more than 400 kg (550 kg for vehicles intended for carrying goods), not including the mass of the batteries in the case of electric vehicles, and whose maximum continuous rated power does not exceed 15 kW

3.4.2 category M
power-driven vehicles having at least four wheels and used for the carriage of passengers

3.4.2.1 category M1
vehicles used for the carriage of passengers and comprising no more than eight seats in addition to the driver's seat

3.4.2.2 category M2
vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat and having a maximum mass not exceeding 5 000 kg

NOTE In this definition, “maximum mass” is equivalent to “maximum authorized mass” used elsewhere in this part of ISO 362.
3.4.2.3
category M3
vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat and having a maximum mass exceeding 5 000 kg

NOTE In this definition, “maximum mass” is equivalent to “maximum authorized mass” used elsewhere in this part of ISO 362.

3.4.3
category N
power-driven vehicles having at least four wheels and used for the carriage of goods

3.4.3.1
category N1
vehicles used for the carriage of goods and having a maximum authorized mass not exceeding 3 500 kg

3.4.3.2
category N2
vehicles used for the carriage of goods and having a maximum authorized mass exceeding 3 500 kg but not exceeding 12 000 kg

3.4.3.3
category N3
vehicles used for the carriage of goods and having a maximum authorized mass exceeding 12 000 kg

3.5
reference point
point depending on the design and category of the vehicle

3.5.1
reference point for category M1 and N1 vehicles
point on the vehicle as follows:

— for front engine vehicles, it is the front end of the vehicle;
— for mid-engine vehicles, it is the centre of the vehicle;
— for rear engine vehicles, it is the rear end of the vehicle

3.5.2
reference point for category M2, M3, N2, and N3 vehicles
point on the vehicle as follows:

— for front engine vehicles, it is the front end of the vehicle;
— for all other vehicles, it is the border of the engine closest to the front of the vehicle

3.6
target acceleration
acceleration at a partial throttle condition in urban traffic, derived from statistical investigations

NOTE Refer to Annex A for more detailed explanations.

3.7
reference acceleration
required acceleration during the acceleration test on the test track

NOTE Refer to Annex A for more detailed explanations.