INTERNATIONAL
STANDARD

Audio and audiovisual equipment – Digital audio parts – Basic measurement methods of audio characteristics –
Part 3: Professional use
Audio and audiovisual equipment – Digital audio parts – Basic measurement methods of audio characteristics – Part 3: Professional use
Figure 14 – Individual harmonic distortion method ... 22
Figure 15 – Total harmonic distortion method .. 22
Figure 16 – Largest spurious signal method ... 23
Figure 17 – Intermodulation method ... 23
Figure 18 – Intermodulation method ... 24
Figure 19 – Amplitude-dependent gain method ... 25
Figure 20 – Intrinsic signal modulation products method ... 25
Figure 21 – Low-amplitude noise modulation method .. 26
Figure 22 – Idle-channel noise method .. 26
Figure 23 – Idle-channel noise spectrum method .. 27
Figure 24 – Dynamic range method ... 27
Figure 25 – Out-of-band noise ratio method ... 27
Figure 26 – Channel separation method .. 28
Figure 27 – Non-linear cross-talk method ... 29
Figure 28 – Power-line (mains) related products method .. 30
Figure 29 – Suppression of the aliasing components method .. 30
Figure 30 – Suppression of imaging components method .. 31
Figure 31 – Sampling jitter susceptibility method ... 32
Figure 32 – Analogue full-scale input amplitude method .. 32
Figure 33 – Overload behaviour method .. 33
Figure 34 – Common-mode rejection ratio method ... 33
Figure 35 – Analogue full-scale output amplitude method ... 34
Figure 36 – Output balance method ... 35

Table A.1 – Stimulus wavetables ... 38
INTERNATIONAL ELECTROTECHNICAL COMMISSION

AUDIO AND AUDIOVISUAL EQUIPMENT –
DIGITAL AUDIO PARTS –
BASIC MEASUREMENT METHODS
OF AUDIO CHARACTERISTICS –

Part 3: Professional use

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

6) All users should ensure that they have the latest edition of this publication.

7) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

8) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61606-3 has been prepared by IEC technical committee 100:Audio, video and multimedia systems and equipment.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/1428/FDIS</td>
<td>100/1453/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts of the IEC 61606 series, under the general title Audio and audiovisual equipment – Digital audio parts – Basic measurement methods of audio characteristics, can be found on the IEC website.

This International Standard is to be used in conjunction with IEC 61606-1.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
1 Scope

This part of IEC 61606 is applicable to the basic measurement methods of audio equipment for professional use.

The definitions, measuring conditions and methods common to both consumer and professional equipment are described in the IEC 61606-1.

This standard contains details of definitions and measuring conditions and methods applicable to professional equipment which differ from those described in IEC 61606-1.

This standard excludes consideration of

- measurement of low-quality audio devices,
- measurement of low-bit-rate audio devices (‘sub-band’ or ‘perceptual’ coding devices),
- measurement of devices which significantly modify time or frequency characteristics of the signal, such as pitch shifters or reverberators,
- measurement of signals from analogue input to analogue output, beyond the most general,
- EMC and safety related testing.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60268-1, Sound system equipment – Part 1: General

IEC 60268-2, Sound system equipment – Part 2: Explanation of general terms and calculation methods

IEC 60958-1, Digital audio interface – Part 1: General

IEC 61260, Electroacoustics – Octave-band and fractional-octave-band filters

IEC 61606-1, Audio and audiovisual equipment – Digital audio parts – Basic measurement methods of audio characteristics – Part 1: General

AES11-2003, AES Recommended Practice for Digital Audio Engineering – Synchronization of digital audio equipment in studio operations
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 aliasing components
see definition in IEC 61606-1

3.2 analogue full-scale input and output amplitude
when applied to an analogue input of the EUT, it produces digital full-scale amplitude within
the EUT; conversely, the analogue output full-scale amplitude is that which is produced at an
analogue output from the EUT by a digital full-scale amplitude within the EUT

NOTE 1 Sometimes the range of an analogue input or output path may be less than that corresponding to digital
full-scale amplitude. For this reason, analogue full-scale input and output amplitudes are usually inferred by driving
the converters at a lower amplitude (see 6.3.1.1 and 6.3.2.1).

NOTE 2 The ideal values of these amplitudes cannot be defined within the standard since they are different for
different EUTs, and may be modally variable for a single EUT.

NOTE 3 Where these values are unknown for an EUT at the outset of testing, they should generally be
established first (using the methods described in 6.3.1.1 and 6.3.2.1 since it may subsequently be necessary, for
example, to drive an analogue input at –60 dBFS or to measure an amplitude at an analogue output in dBFS
relative to a digital stimulus.

3.3 coding format
a numerical convention used to represent digital audio data at the inputs or outputs of the
EUT

NOTE This standard is primarily intended to be applied to EUTs which transact digital audio signals expressed as a
stream of LPCM (Linear Pulse Code Modulation) samples; that is, a stream of binary words, directly representing
the amplitudes of successive audio samples quantised at the sampling frequency, and rendered as binary 2’s
complement numbers. Positive analogue voltages correspond to positive digital sample values (that is, 2’s
complement numbers whose most-significant bit (MSB) is zero). Many of the methods described in the standard are
applicable to other coding formats.

3.4 decibels full-scale
dBFS
the r.m.s. amplitude of a sinusoid described in 3.10 is defined as 0 dBFS, where the amplitude
of any signal can be defined in dBFS as 20 times the common logarithm of the ratio of the
r.m.s. amplitude of the signal to that of the signal defined in 3.10

NOTE Analogue amplitudes at the input or output of an EUT can be expressed in dBFS by referring to the
analogue full-scale input or output amplitudes as defined in 3.2.

3.5 digital audio interface
a physical medium upon which digital audio data are transferred into or out of the EUT

NOTE Digital audio interfaces may include packaged media (such as in the case of a CD player) or
radio-frequency (RF) carriers (such as in the case of a set-top-box) as well as conventional copper or optical digital
interconnections.

3.6 digital audio signal
see definition in IEC 61606-1

3.7 digital zero
see definition in IEC 61606-1
3.8 equipment under test
EUT
see definition in IEC 61606-1

NOTE In structuring an equipment or installation specification, it is important to consider the way in which the different elements of the equipment might best be segmented for the purposes of the specification or measurement. A basic D/A converter, for example, would represent a simple EUT with ‘General characteristics’, ‘Digital input characteristics’ and ‘Analogue output characteristics’. But consider a large studio mixing console, which may have many different functional blocks, and many different inputs and outputs of different types and in different domains. Such a mixing console example might be considered as a collection of different elements; for example, ‘analogue line inputs’, ‘analogue mic inputs’, ‘AES3 inputs’, ‘channel equalizers’, ‘mix bus processors’ etc. Typically, different measurement criteria are applicable to each different element, and different performance levels might be specified. In such a case each element or subsystem should, where possible, be considered as a discrete ‘EUT’ and should be specified and measured individually. In addition, typical signal paths through the entire equipment may also be specified, and their performance criteria stated as a single EUT.

3.9 folding frequency
half the sampling frequency of the EUT

NOTE 1 Signals above this frequency applied to the EUT are subject to aliasing.

NOTE 2 Complex EUTs may have an input folding frequency and an output folding frequency which are different. In such cases, where input or output is unspecified, the folding frequency shall refer to the lower frequency.

3.10 full-scale amplitude
FS
amplitude of a 997 Hz sinusoid whose peak positive sample just reaches positive digital full-scale (in 2’s-complement a binary value of 0111…1111 to make up the word length) and whose peak negative sample just reaches a value one away from negative digital full-scale (1000…0001 to make up the word length) leaving the maximum negative code (1000…0000) unused

3.11 high and low interference frequencies
moderately high and low signal frequencies of 15 kHz and 60 Hz respectively at which certain interference effects may be quoted if a graphical report is not required

3.12 in-band amplitude
an amplitude measurement incorporating a standard low-pass filter so as to exclude out-of-band components above the upper band-edge frequency

3.13 in-band frequency range
see definition in IEC 61606-1

3.14 input word length
the maximum audio word length which can be applied to a digital input of the EUT at its present settings, for which the least significant bit is not ignored

3.15 interface jitter
timing errors in the transitions of a digital audio carrier or reference sync, owing to cabling effects or jitter in the clock of the sourcing equipment
3.16 **jitter susceptibility**
the effect on EUT performance as a result of sampling jitter caused by interface jitter on the
incoming reference sync

3.17 **maximal measuring amplitude**
a signal amplitude of -1 dB_{FS}, close to (but below) full scale amplitude, which is applied to
the EUT in certain of the described methods

NOTE This definition can apply to either a digital or an analogue signal (see 3.4).

3.18 **normal load impedance**
required differential input impedance of the analogue measuring equipment defined as 100 kΩ
or more, in parallel with not more than 500 pF in this standard

3.19 **normal measuring amplitude**
a signal amplitude of -20 dB_{FS}, representative of a typical operating amplitude, which is
applied to the EUT in certain of the described methods

NOTE This definition can apply to either a digital or an analogue signal (see 3.4).

3.20 **normal measuring frequency**
a signal frequency of 997 Hz, representative of a typical mid-range frequency, which is
applied to the EUT in certain of the described methods

3.21 **normal source impedance**
required differential output impedance of the analogue measuring equipment defined as 50 Ω
or less for a balanced output and 25 Ω or less for an unbalanced output in this standard

3.22 **out-of-band amplitude**
amplitude measurement incorporating a standard out-of-band filter so as to exclude in-band
components below the upper band-edge frequency

3.23 **out-of-band frequency range**
frequency range from the folding frequency to 192 kHz (or some other stated maximum)

NOTE Signals applied to the EUT input in this frequency range are subject to aliasing.

3.24 **output word length**
number of significant bits transmitted by a digital output of the EUT at its present settings, of
which none is continuously zero

3.25 **residual amplitude**
an amplitude measurement incorporating a standard band-reject filter to suppress the effects
of an unwanted frequency, usually the stimulus frequency

3.26 **sampling frequency**
f_s the rate at which audio samples are processed within the EUT