High-voltage switchgear and controlgear –
Part 203: Gas-insulated metal-enclosed switchgear for rated voltages above 52 kV

Appareillage à haute tension –
Partie 203: Appareillage sous enveloppe métallique à isolation gazeuse de tensions assignées supérieures à 52 kV
High-voltage switchgear and controlgear –
Part 203: Gas-insulated metal-enclosed switchgear for rated voltages above 52 kV

Appareillage à haute tension –
Partie 203: Appareillage sous enveloppe métallique à isolation gazeuse de tensions assignées supérieures à 52 kV
CONTENTS

FOREWORD ... 6
1 General ... 8
 1.1 Scope ... 8
 1.2 Normative references .. 8
2 Normal and special service conditions ... 9
 2.1 Normal service conditions ... 9
 2.2 Special service conditions .. 9
3 Terms and definitions ... 10
4 Ratings ... 12
 4.1 Rated voltage \((U_r) \) .. 13
 4.2 Rated insulation level ... 13
 4.3 Rated frequency \((f_r) \) ... 15
 4.4 Rated normal current and temperature rise ... 15
 4.4.1 Rated normal current \((I_r) \) .. 15
 4.4.2 Temperature rise ... 15
 4.5 Rated short-time withstand current \((I_k) \) ... 15
 4.6 Rated peak withstand current \((I_p) \) ... 15
 4.7 Rated duration of short-circuit \((t_k) \) ... 15
 4.8 Rated supply voltage of closing and opening devices and of auxiliary and control circuits \((U_a) \) ... 15
 4.9 Rated supply frequency of closing and opening devices and of auxiliary circuits .. 16
 4.10 Rated pressure of compressed gas supply for controlled pressure systems 16
 4.11 Rated filling levels for insulation and/or operation .. 16
5 Design and construction ... 16
 5.1 Requirements for liquids in switchgear and controlgear ... 16
 5.2 Requirements for gases in switchgear and controlgear ... 16
 5.3 Earthing of switchgear and controlgear ... 16
 5.4 Auxiliary and control equipment ... 17
 5.5 Dependent power operation .. 17
 5.6 Stored energy operation .. 17
 5.7 Independent manual or power operation (independent unlatched operation) 17
 5.8 Operation of releases .. 17
 5.9 Low- and high-pressure interlocking and monitoring devices 17
 5.10 Nameplates ... 18
 5.11 Interlocking devices .. 18
 5.12 Position indication ... 18
 5.13 Degrees of protection by enclosures .. 18
 5.14 Creepage distances for outdoor insulators ... 18
 5.15 Gas and vacuum tightness ... 19
 5.15.1 Controlled pressure systems for gas ... 19
 5.15.2 Closed pressure systems for gas ... 19
 5.15.3 Sealed pressure systems .. 19
 5.16 Liquid tightness .. 19
 5.17 Fire hazard (flammability) ... 19
 5.18 Electromagnetic compatibility (EMC) ... 19
6.1 General ... 27
 6.1.1 Grouping of tests ... 27
 6.1.2 Information for identification of specimens .. 28
 6.1.3 Information to be included in type-tests reports ... 29
6.2 Dielectric tests ... 29
 6.2.1 Ambient air conditions during tests ... 29
 6.2.2 Wet test procedure .. 29
 6.2.3 Conditions of switchgear and controlgear during dielectric tests 29
 6.2.4 Criteria to pass the test .. 29
 6.2.5 Application of the test voltage and test conditions 29
 6.2.6 Tests of switchgear and controlgear of \(U_f \leq 245 \text{kV} \) 30
 6.2.7 Tests of switchgear and controlgear of rated voltage \(U_f >245 \text{kV} \) 30
 6.2.8 Artificial pollution tests for outdoor insulators ... 31
 6.2.9 Partial discharge tests .. 31
 6.2.10 Dielectric tests on auxiliary and control circuits 32
 6.2.11 Voltage test as condition check ... 32
6.3 Radio interference voltage (r.i.v.) test ... 32
6.4 Measurement of the resistance of circuits .. 32
 6.4.1 Main circuit .. 32
 6.4.2 Auxiliary circuits .. 32
6.5 Temperature-rise tests ... 32
 6.5.1 Conditions of the switchgear and controlgear to be tested 32
 6.5.2 Arrangement of the equipment .. 32
 6.5.3 Measurement of the temperature and the temperature rise 33
 6.5.4 Ambient air temperature .. 33
 6.5.5 Temperature-rise test of the auxiliary and control equipment 33
 6.5.6 Interpretation of the temperature-rise tests .. 33
6.6 Short-time withstand current and peak withstand current tests 33
 6.6.1 Arrangement of the switchgear and controlgear and of the test circuit 33
 6.6.2 Test current and duration .. 33
 6.6.3 Behaviour of switchgear and controlgear during test 33
 6.6.4 Conditions of switchgear and controlgear after test 34
6.7 Verification of the protection ... 34
 6.7.1 Verification of the IP coding ... 34
 6.7.2 Verification of the IK coding ... 34
6.8 Tightness tests ... 34
 6.8.1 Controlled pressure systems for gas .. 34
 6.8.2 Closed pressure systems for gas ... 34
 6.8.3 Sealed pressure systems ... 35
6.8.4 Liquid tightness tests ... 35
6.9 Electromagnetic compatibility tests (EMC) ... 35
6.10 Additional tests on auxiliary and control circuits 35
6.11 X-radiation test procedure for vacuum interrupters 35
6.101 Verification of making and breaking capacities .. 35
6.102 Mechanical and environmental tests ... 35
6.103 Proof tests for enclosures ... 36
6.104 Pressure test on partitions ... 37
6.105 Test under conditions of arcing due to an internal fault 37
6.106 Insulator tests .. 38
6.107 Corrosion test on earthing connections .. 38
6.108 Corrosion tests on enclosures ... 39
7 Routine tests ... 39
 7.1 Dielectric test on the main circuit ... 39
 7.1.101 Power-frequency voltage tests on the main circuit 40
 7.1.102 Partial discharge measurement .. 40
 7.2 Tests on auxiliary and control circuits ... 40
 7.3 Measurement of the resistance of the main circuit 40
 7.4 Tightness test ... 40
 7.5 Design and visual checks .. 40
 7.101 Pressure tests of enclosures .. 40
 7.102 Mechanical operation tests .. 41
 7.103 Tests on auxiliary circuits, equipment and interlocks in the control mechanism 41
 7.104 Pressure test on partitions ... 41
8 Guide to the selection of switchgear and controlgear 41
 8.1 Selection of rated values ... 41
 8.2 Continuous or temporary overload due to changed service conditions 41
9 Information to be given with enquiries, tenders and orders 42
 9.1 Information with enquiries and orders ... 42
 9.2 Information with tenders .. 42
10 Transport, storage, installation, operation and maintenance 42
 10.1 Conditions during transport, storage and installation 42
 10.2 Installation .. 42
 10.3 Operation .. 47
 10.4 Maintenance .. 48
11 Safety ... 48
12 Influence of the product on the environment ... 48
Annex A (normative) Test procedure for dielectric test on three-phase encapsulated GIS, range II ... 49
Annex B (normative) Methods for testing gas-insulated metal-enclosed switchgear under conditions of arcing due to an internal fault 50
Annex C (informative) Technical and practical considerations of site testing 53
Annex D (informative) Calculation of pressure rise due to an internal fault 58
Annex E (informative) Information to be given with enquiries, tenders and orders 59
Annex F (informative) Service continuity .. 65
Annex G (informative) Insulation levels for GIS with rated voltages higher than 800 kV 74
Annex H (informative) List of notes concerning certain countries 75
INTERNATIONAL ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 203: Gas-insulated metal-enclosed switchgear
for rated voltages above 52 kV

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-203 has been prepared by subcommittee 17C: High-voltage switchgear and controlgear assemblies, of IEC technical committee 17: Switchgear and controlgear.

This second edition of IEC 62271-203 cancels and replaces the first edition of IEC 62271-203, published in 2003, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- adopting the structure and the content to IEC 62271-1,
- harmonisation with IEEE C37.122,
- addition of the new Annex F and the new Annex G.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>17C/512/FDIS</td>
<td>17C/524/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The reader’s attention is drawn to the fact that Annex H lists all of the 'in-some-country' clauses on differing practices of a less permanent nature relating to the subject of this standard.

This International Standard should be read in conjunction with IEC 62271-1:2007, to which it refers and which is applicable unless otherwise specified. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in IEC 62271-1. Amendments to these clauses and subclauses are given under the same numbering, whilst additional subclauses, are numbered from 101.

A list of all the parts of IEC 62271 series can be found under the general title High-voltage switchgear and controlgear, on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
1 General

1.1 Scope

This part of IEC 62271 specifies requirements for gas-insulated metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas other than air at atmospheric pressure, for alternating current of rated voltages above 52 kV, for indoor and outdoor installation, and for service frequencies up to and including 60 Hz.

For the purpose of this standard, the terms “GIS” and “switchgear” are used for “gas-insulated metal-enclosed switchgear”.

The gas-insulated metal-enclosed switchgear covered by this standard consists of individual components intended to be directly connected together and able to operate only in this manner.

This standard completes and amends, if necessary, the various relevant standards applying to the individual components constituting GIS.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-11, Basic environmental testing procedures – Part 2-11: Tests – Test Ka: Salt mist

IEC 60137:2008, Insulating bushings for alternating voltages above 1 000 V

IEC 60141-1, Tests on oil-filled and gas-pressure cables and their accessories – Part 1: Oil-filled, paper-insulated, metal-sheathed cables and accessories for alternating voltages up to and including 400 kV

IEC 60270, High-voltage test techniques – Partial discharge measurements

IEC 60376, Specification of technical grade sulfur hexafluoride (SF$_6$) for use in electrical equipment

IEC 60480, Guidelines for the checking and treatment of sulfur hexafluoride (SF$_6$) taken from electrical equipment and specification for its re-use

IEC 60840, Power cables with extruded insulation and their accessories for rated voltages above 30 kV ($U_m = 36$ kV) up to 150 kV ($U_m = 170$ kV) – Test methods and requirements
2 Normal and special service conditions

Clause 2 of IEC 62271-1 is applicable with the following additions:

At any altitude the dielectric characteristics of the internal insulation are identical with those measured at sea-level. For this internal insulation, therefore, no specific requirements concerning the altitude are applicable.

Some items of a GIS such as pressure relief devices and pressure and density monitoring devices may be affected by altitude. The manufacturer shall take appropriate measures if necessary.

2.1 Normal service conditions
Subclause 2.1 of IEC 62271-1 is applicable, taking into account Table 1 of this standard.

2.2 Special service conditions
Subclause 2.2 of IEC 62271-1 is applicable, taking into account Table 1 of this standard.

In the cases where higher than (>) is used in the table the values shall be specified by the user as described in IEC 62271-1.
Table 1 – Reference table of service conditions relevant to GIS

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indoor</td>
<td>Outdoor</td>
</tr>
<tr>
<td>Ambient air temperature:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum (°C)</td>
<td>−5 or −25</td>
<td>−25 or −40</td>
</tr>
<tr>
<td>Maximum (°C)</td>
<td>+40</td>
<td>+40</td>
</tr>
<tr>
<td>Solar radiation (W/m²)</td>
<td>Not applicable</td>
<td>1 000</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>Site pollution severity a</td>
<td>Not applicable</td>
<td>c</td>
</tr>
<tr>
<td>Ice coating (mm)</td>
<td>Not applicable</td>
<td>1, 10 or 20</td>
</tr>
<tr>
<td>Wind (m/s)</td>
<td>Not applicable</td>
<td>34</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Condensation or precipitation</td>
<td>Occasional</td>
<td>Yes</td>
</tr>
<tr>
<td>Vibration class</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

NOTE The user’s specification may use any combination of normal or special service conditions above.

a Site pollution severity c, d or e according to IEC/TS 60815-1:2008, 8.3.

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62271-1, as well as the following, apply.

3.101 metal-enclosed switchgear and controlgear
switchgear and controlgear assemblies with an external metal enclosure intended to be earthed, and complete except for external connections

[IEC 60050-441:1984, 441-12-04]

3.102 gas-insulated metal-enclosed switchgear
metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas other than air at atmospheric pressure

[IEC 60050-441:1984, 441-12-05]

NOTE 1 This term generally applies to high-voltage switchgear and controlgear.

NOTE 2 Three-phase enclosed gas-insulated switchgear applies to switchgear with the three phases enclosed in a common enclosure.

NOTE 3 Single-phase enclosed gas-insulated switchgear applies to switchgear with each phase enclosed in a single independent enclosure.

3.103 gas-insulated switchgear enclosure
part of gas-insulated metal-enclosed switchgear retaining the insulating gas under the prescribed conditions necessary to maintain safely the highest insulation level, protecting the equipment against external influences and providing a high degree of protection to personnel

NOTE The enclosure can be single-phase or three-phase.
3.104 removable link
part of the conductor which can easily be removed in order to isolate two parts of the GIS from each other

3.105 compartment
part of gas-insulated metal-enclosed switchgear, totally enclosed except for openings necessary for interconnection and control

NOTE A compartment may be designated by the main component contained therein, e.g. circuit-breaker compartment, busbar compartment.

3.106 component
essential part of the main or earthing circuits of gas-insulated metal-enclosed switchgear which serves a specific function (for example circuit-breaker, disconnector, switch, fuse, instrument transformer, bushing, busbar, etc.)

3.107 support insulator
internal insulator supporting one or more conductors

3.108 partition
support insulator of gas-insulated metal-enclosed switchgear separating one compartment from other compartments

3.109 bushing
device that enables one or several conductors to pass through a partition such as a wall or a tank, and insulate the conductors from it

NOTE The means of attachment (flange or fixing device) to the partition form part of the bushing.

3.110 main circuit
all the conductive parts of gas-insulated metal-enclosed switchgear included in a circuit which is intended to transmit electrical energy

3.111 auxiliary circuit
all the conductive parts of gas-insulated metal-enclosed switchgear included in a circuit (other than the main circuit) intended to control, measure, signal and regulate

NOTE The auxiliary circuits of gas-insulated metal-enclosed switchgear include the control and auxiliary circuits of the switching devices.

3.112 design temperature of enclosures
maximum temperature that the enclosures can reach under specified maximum service conditions

3.113 design pressure of enclosures
relative pressure used to determine the design of the enclosure
NOTE 1 It is at least equal to the maximum pressure in the enclosure at the highest temperature that the gas used for insulation can reach under specified maximum service conditions.

NOTE 2 The transient pressure occurring during and after a breaking operation (e.g. circuit-breaker) is not to be considered in the determination of the design pressure.

3.114 design pressure of partitions
relative pressure across the partition

NOTE 1 It is at least equal to the maximum relative pressure across the partition during maintenance activities.

NOTE 2 The transient pressure occurring during and after a breaking operation (e.g. circuit-breaker) is not to be considered in the determination of the design pressure.

3.115 operating pressure of pressure relief device
relative pressure chosen for the opening operation of pressure relief devices

3.116 routine test pressure of enclosures and partitions
relative pressure to which all enclosures and partitions are subjected after manufacturing

3.117 type test pressure of enclosures and partitions
relative pressure to which all enclosures and partitions are subjected for type test

3.118 fragmentation
damage to enclosure due to pressure rise with projection of solid material

NOTE The term "no fragmentation of the enclosure" is interpreted as follows:
– no explosion of the compartment;
– no solid parts flying off from the compartment.

Exceptions are:
– parts of the pressure relief device, if their ejection is directed;
– glowing particles and molten material resulting from burn-through of the enclosure.

3.119 disruptive discharge
phenomena associated with the failure of insulation under electric stress, in which the discharge completely bridges the insulation under test, reducing the voltage between the electrodes to zero or almost zero

3.120 service period
time until a maintenance, including opening of the gas compartments, is required

3.121 transport unit
part of gas-insulated metal-enclosed switchgear suitable for shipment without being dismantled

4 Ratings

Clause 4 of IEC 62271-1 is applicable with the following modifications:
e) rated short-time withstand current \((I_k) \) (for main and earthing circuits);

f) rated peak withstand current \((I_p) \) (for main and earthing circuits);

and with the following addition:

l) rated values of the components forming part of gas-insulated metal-enclosed switchgear, including their operating devices and auxiliary equipment.

4.1 Rated voltage \((U_r) \)

Subclause 4.1 of IEC 62271-1 is applicable with the following addition:

NOTE Components forming part of the GIS may have individual values of rated voltage for equipment in accordance with the relevant standards.

4.2 Rated insulation level

Subclause 4.2 of IEC 62271-1 is applicable with the following addition:

Tables 1 and 2 in Subclause 4.2 of IEC 62271-1 are replaced by Tables 2 and 3 below.

For rated voltages above 800 kV, see Annex G.

The GIS comprises components having a definite insulation level. Although internal faults can largely be avoided by the choice of a suitable insulation level, measures to limit external overvoltages (e.g. surge arresters,) should be considered.

NOTE 1 According to CIGRE studies the natural ratio between the withstand voltages under standard tests, for \(\text{SF}_6 \) gas insulation is \(U_d / U_p = 0.45 \) and \(U_s / U_p = 0.75 \). The values \(U_d \) shown in Table 3 are calculated with these factors.

NOTE 2 Regarding the external parts of bushings (if any), refer to IEC 60137.

NOTE 3 The waveforms are standardized lightning impulse and switching impulse shapes, pending the results of studies on the ability of this equipment to withstand other types of impulses.

NOTE 4 The choice between alternative insulation levels for a particular rated voltage for equipment should be based on insulation coordination studies, taking into account also the self-generated transient overvoltages due to switching.
Table 2 – Rated insulation levels for rated voltages for equipment of range I

<table>
<thead>
<tr>
<th>Rated voltage for equipment U_r kV (r.m.s. value)</th>
<th>Rated short-duration power-frequency withstand voltage U_d kV (r.m.s. value)</th>
<th>Rated lightning impulse withstand voltage U_p kV (peak value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth, across open switching device and between phases</td>
<td>Across the isolating distance</td>
<td>Phase-to-earth, across open switching device and between phases</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>72.5</td>
<td>140</td>
<td>160</td>
</tr>
<tr>
<td>100</td>
<td>185</td>
<td>210</td>
</tr>
<tr>
<td>123</td>
<td>230</td>
<td>265</td>
</tr>
<tr>
<td>145</td>
<td>275</td>
<td>315</td>
</tr>
<tr>
<td>170</td>
<td>325</td>
<td>375</td>
</tr>
<tr>
<td>245</td>
<td>460</td>
<td>530</td>
</tr>
</tbody>
</table>

NOTE Values in column (2) are applicable
- a) for type tests, phase-to-earth and between phases;
- b) for routine tests, phase-to-earth, phase-to-phase, and across the open switching device.

Values in columns (3), (4) and (5) are applicable for type tests only.

Table 3 – Rated insulation levels for rated voltages for equipment of range II

<table>
<thead>
<tr>
<th>Rated voltage for equipment U_r kV (r.m.s. value)</th>
<th>Rated short-duration power-frequency withstand voltage U_d kV (r.m.s. value)</th>
<th>Rated switching impulse withstand voltage U_s kV (peak value)</th>
<th>Rated lightning impulse withstand voltage U_p kV (peak value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth and between phases (Note 3)</td>
<td>Across open switching device and/or isolating distance (Note 3)</td>
<td>Phase-to-earth and across open switching device</td>
<td>Between phases (Notes 3 and 4)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>300</td>
<td>460</td>
<td>595</td>
<td>850</td>
</tr>
<tr>
<td>362</td>
<td>520</td>
<td>675</td>
<td>950</td>
</tr>
<tr>
<td>420</td>
<td>650</td>
<td>815</td>
<td>1 050</td>
</tr>
<tr>
<td>550</td>
<td>710</td>
<td>925</td>
<td>1 175</td>
</tr>
<tr>
<td>800</td>
<td>960</td>
<td>1 270</td>
<td>1 425</td>
</tr>
</tbody>
</table>
NOTE 1 Column (6) is also applicable to some circuit-breakers, see IEC 62271-100.

NOTE 2 In column (6), values in brackets are the peak values of the power-frequency voltage \(U_{r3/2} \) applied to the opposite terminal (combined voltage).

In column (8), values in brackets are the peak values of the power-frequency voltage \(0,7 U_{r3/2} \) applied to the opposite terminal (combined voltage).

NOTE 3 Values in column (2) are applicable:

a) for type tests, phase-to-earth and between phases;

b) for routine tests, phase-to-earth, phase-to-phase, and across the open switching device.

Values in columns (3), (4), (6), (7) and (8) are applicable for type tests only.

NOTE 4 These values are derived using the multiplying factors stated in Table 3 of IEC 60071-1:2006.

4.3 Rated frequency \((f_r) \)

Subclause 4.3 of IEC 62271-1 is applicable.

4.4 Rated normal current and temperature rise

4.4.1 Rated normal current \((I_r) \)

Subclause 4.4.1 of IEC 62271-1 is applicable with the following addition:

Some main circuits of GIS (e.g. busbars, feeder circuits, etc.) may have different values of rated normal current. However, these values should also be selected from R10 series.

4.4.2 Temperature rise

Subclause 4.4.2 of IEC 62271-1 is applicable with the following addition:

The temperature rise of components contained in the GIS which are subject to standards not covered by the scope of IEC 62271-1 shall not exceed the temperature-rise limits permitted in the relevant standard for those components.

NOTE When applying a temperature rise equal to or higher than 65 K for parts of the enclosure not accessible to the operator, every precaution should be taken to ensure that no damage is caused to the surrounding insulating materials.

4.5 Rated short-time withstand current \((I_k) \)

Subclause 4.5 of IEC 62271-1 is applicable.

4.6 Rated peak withstand current \((I_p) \)

Subclause 4.6 of IEC 62271-1 is applicable with the following addition:

NOTE In principle, the rated short-time withstand current and the rated peak withstand current of a main circuit cannot exceed the corresponding rated values of the weakest of its series connected components.

4.7 Rated duration of short-circuit \((t_k) \)

Subclause 4.7 of IEC 62271-1 is applicable.

4.8 Rated supply voltage of closing and opening devices and of auxiliary and control circuits \((U_a) \)

Subclause 4.8 of IEC 62271-1 is applicable.
4.9 Rated supply frequency of closing and opening devices and of auxiliary circuits
Subclause 4.9 of IEC 62271-1 is applicable.

4.10 Rated pressure of compressed gas supply for controlled pressure systems
Subclause 4.10 of IEC 62271-1 is not applicable.

4.11 Rated filling levels for insulation and/or operation
Subclause 4.11 of IEC 62271-1 is applicable.

5 Design and construction
GIS shall be designed so that normal service, inspection and maintenance operations, earthing of connected cables, locating of cable faults, voltage tests on connected cables or other apparatus and the elimination of dangerous electrostatic charges, can be carried out safely, including the checking of phase sequence after installation and extension.

The design of the equipment shall be such that the agreed permitted movement of foundations and mechanical or thermal effects do not impair the assigned performance of the equipment.

All components of the same rating and construction which may need to be replaced shall be interchangeable.

The various components contained within the enclosure are subject to their relevant standards except where modified by this standard.

5.1 Requirements for liquids in switchgear and controlgear
Subclause 5.1 of IEC 62271-1 is not applicable.

5.2 Requirements for gases in switchgear and controlgear
Subclause 5.2 of IEC 62271-1 is applicable with the following addition:

Recommendation for dew-point measurements and adequate corrections shall be supplied by the manufacturer. Refer to E.4

5.3 Earthing of switchgear and controlgear
Subclause 5.3 of IEC 62271-1 is applicable.

5.3.101 Earthing of the main circuit
To ensure safety during maintenance work, all parts of the main circuit to which access is required or provided shall be capable of being earthed.

Earthing may be made by:

a) earthing switches with a making capacity equal to the rated peak withstand current, if there is still a possibility that the circuit connected is live;

b) earthing switches without a making capacity or with a making capacity lower than the rated peak withstand current, if there is certainty that the circuit connected is not live.
Furthermore, it shall be possible, after opening the enclosure, to connect removable earthing devices for the duration of the work on a circuit element previously earthed via an earthing switch.

The earthing circuit may be degraded after being subjected to the rated short-circuit current. After such event, earthing circuit may need to be replaced.

5.3.102 Earthing of the enclosure

The enclosures shall be connected to earth. All metal parts which do not belong to a main or an auxiliary circuit shall be earthed. For the interconnection of enclosures, frames, etc., fastening (e.g. bolting or welding) is acceptable for providing electrical continuity.

The continuity of the earthing circuits shall be ensured taking into account the thermal and electrical stresses caused by the current they may have to carry.

If using single-phase enclosed switchgear, a looping circuit, i.e. an interconnection between the enclosures of the three phases, should be installed for the induced current. Each of these looping circuits should be linked as directly as possible to the general earthing grid by a conductor capable to carry the short-circuit current.

NOTE The looping circuits are intended to avoid induced currents in the enclosures from flowing in the earthing circuits and earthing grid. They are usually dimensioned for rated current and located at the appropriate location according to the layout of the GIS installation.

5.4 Auxiliary and control equipment

Subclause 5.4 of IEC 62271-1 is applicable.

5.5 Dependent power operation

Subclause 5.5 of IEC 62271-1 is applicable.

5.6 Stored energy operation

Subclause 5.6 of IEC 62271-1 is applicable.

5.7 Independent manual or power operation (independent unlatched operation)

Subclause 5.7 of IEC 62271-1 is applicable.

5.8 Operation of releases

Subclause 5.8 of IEC 62271-1 is applicable.

5.9 Low- and high-pressure interlocking and monitoring devices

Subclause 5.9 of IEC 62271-1 is applicable with the following addition:

For GIS only gas density is of importance.

The gas density or temperature compensated gas pressure in each compartment shall be continuously monitored. The monitoring device shall provide at least two sets of alarm levels for pressure or density (alarm and minimum functional pressure or density). Gas monitoring devices shall be capable of being checked with the high-voltage equipment in service.

NOTE 1 When the rated filling density differs between adjacent compartments, an additional alarm indicating over pressure or density may be used.