Safety requirements for secondary batteries and battery installations –
Part 2: Stationary batteries

Exigences de sécurité pour les batteries d’accumulateurs et les installations
de batteries –
Partie 2: Batteries stationnaires
INTERNATIONAL STANDARD

NORME INTERNATIONALE

Safety requirements for secondary batteries and battery installations –
Part 2: Stationary batteries

Exigences de sécurité pour les batteries d’accumulateurs et les installations de batteries –
Partie 2: Batteries stationnaires
CONTENTS

FOREWORD...4

INTRODUCTION..6

1 Scope..7

2 Normative references...7

3 Terms and definitions ...8

4 Protection against electric shock ...10

4.1 General ..10

4.2 Protection against direct contact ..11

4.3 Protection against indirect contact ...11

4.3.1 Protection by automatic disconnection of supply ..12

4.3.2 Protection by use of class II equipment or by equivalent insulation16

4.3.3 Protection by electrical separation ..16

4.4 Protection against both direct and indirect contact ...16

4.4.1 General ..16

4.4.2 Protection by Safety Extra Low Voltage (SELV) or by Protective Extra Low Voltage (PELV) ...16

4.4.3 Protection by Functional Extra Low Voltage (FELV) without protective separation ...17

5 Disconnection and separation ..17

6 Prevention of short circuits and protection from other effects of electric current17

6.1 General ..17

6.2 Short-circuits ...18

6.3 Protective measures during maintenance ...18

6.4 Leakage currents ..19

7 Provisions against explosion hazards ..19

7.1 Gas generation ...19

7.2 Ventilation requirements ...19

7.3 Natural ventilation ..21

7.4 Forced ventilation ..22

7.5 Charging modes ...22

7.6 Over charging under fault conditions ...22

7.7 Close vicinity to the battery ..22

7.8 Prevention of electrostatic discharges when working with batteries23

8 Provision against electrolyte hazard ...23

8.1 Electrolyte and water ..23

8.2 Protective clothing ..23

8.3 Accidental contact and "First Aid" ...23

8.3.1 General ..23

8.3.2 Eye contact ...24

8.3.3 Skin contact ..24

8.4 Battery accessories and maintenance tools ...24

9 Accommodation, housing ..24

9.1 General ..24

9.2 Specific requirements for separate battery rooms ..24

9.3 Specific requirements for the specially separated areas in rooms accommodating electrical equipment ..25
9.4 Battery enclosures ... 25
9.5 Working on or near batteries .. 26
9.5.1 Working distances within battery rooms .. 26
9.5.2 Remarks on special work in battery rooms ... 26
9.6 Accommodation of lead-acid and NiCd batteries in the same room 26
10 Charge current requirements .. 26
10.1 Superimposed ripple current ... 26
10.2 Maximum ripple current ... 27
11 Identification labels, warning notices and instructions for use, installation and maintenance ... 27
11.1 Warning labels and notices in rooms ... 27
11.2 Identification labels or marking on cells and monobloc batteries 27
11.3 Instructions for use, installation and maintenance ... 28
12 Transportation, storage, disposal and environmental aspects 28
12.1 Packing and transport ... 28
12.2 Dismantling, disposal, and recycling of batteries .. 28
13 Inspection and monitoring ... 28
Annex A (informative) Charging methods and modes of operation 30
Annex B (informative) Calculation of safety distance d to protect against explosion hazards ... 34
Bibliography .. 37

Figure 1 – TN system with separate protective conductor (PE) in the entire system (TN-S network) .. 13
Figure 2 – TN system with functional earthing and protective (FPE, PEN) combined with an external line conductor (TN-C system) .. 13
Figure 3 – TT system ... 14
Figure 4 – IT system ... 15
Figure 5 – Converters with intermediate DC circuit (IT-system) (Example) 15
Figure A.1 – Parallel operation mode circuit .. 30
Figure A.2 – Battery charge current interlaced with frequent temporary discharge events due to a load current exceeding the current supply capability ... 31
Figure A.3 – Response mode operation circuit .. 32
Figure A.4 – IU-or CC-CV charge profile .. 32
Figure A.5 – Time dependant profile of current I and voltage U 32
Figure B.1 – Safety distance d as a function of the rated capacity for various charge currents I (mA/Ah) ... 36

Table 1 – Values for current I when charging with IU- or U-charging profiles (see also Annex A) .. 21
Table 2 – Recommended upper limits of AC ripple current flowing through the battery as I_{eff} per 100 Ah rated battery capacity .. 27
Table A.1 – Float charge voltages for lead-acid and NiCd batteries 30
Table A.2 – Typical charge voltage levels at 20 °C .. 33
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62485-2 has been prepared by IEC technical committee 21: Secondary cells and batteries.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/711/FDIS</td>
<td>21/718/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62485 series can be found, under the general title Safety requirements for secondary batteries and battery installations, on the IEC website.
The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The described safety requirements comprise the protective measures to protect from hazards generated by the electricity, the electrolyte, and the explosive gases when using secondary batteries. In addition measures are described to maintain the functional safety of batteries and battery installations.

For the electrical safety (protection against electric shock) under Clause 4, this standard refers to IEC 60364-4-41. The pilot function of this standard is fully observed by indication of cross-reference numbers of the relevant clauses, but interpretation is given where adoption to direct current (DC) circuits is required.

This safety standard comes into force with the date of publication and applies to all new batteries and battery installations. Previous installations are intended to conform to the existing national standards at the time of installation. In case of redesign of old installations this standard applies.

Valve-regulated lead-acid batteries used in stationary battery installations are intended to fulfil safety requirements in accordance to IEC 60896-21 and IEC 60896-22.
1 Scope

This part of the IEC 62485 applies to stationary secondary batteries and battery installations with a maximum voltage of DC 1 500 V (nominal) and describes the principal measures for protections against hazards generated from:

– electricity,
– gas emission,
– electrolyte.

This International Standard provides requirements on safety aspects associated with the erection, use, inspection, maintenance and disposal.

It covers lead-acid and NiCd / NiMH batteries.

Examples for the main applications are:

– telecommunications,
– power station operation,
– central emergency lighting and alarm systems,
– uninterruptible power supplies,
– stationary engine starting,
– photovoltaic systems.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-4-41, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60364-4-43, Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent

IEC 60364-5-53, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)

IEC 60622:2002, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Sealed nickel cadmium prismatic rechargeable single cells

IEC 60623:2001, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Vented nickel-cadmium prismatic rechargeable single cells
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 (secondary) cell
(rechargeable) cell
single cell
assembly of electrodes and electrolyte which constitutes the basic unit of a secondary battery

NOTE This assembly is contained in an individual case and closed by a cover.

3.2 vented (secondary) cell
secondary cell having a cover provided with an opening through which gaseous products may escape

3.3 valve regulated (secondary) cell
secondary cell which is closed under normal conditions but has an arrangement which allows the escape of gas if the internal pressure exceeds a predetermined value. The cell cannot normally receive addition to the electrolyte
3.4 gastight sealed (secondary) cell
secondary cell which remains closed and does not release either gas or liquid when operated within the limits of charge and temperature specified by the manufacturer. The cell may be equipped with a safety device to prevent dangerously high internal pressure. The cell does not require addition to the electrolyte and is designed to operate during its life in its original sealed state.

3.5 secondary battery
two or more secondary cells connected together and used as a source of electrical energy.

3.6 lead dioxide-lead (acid) battery
secondary battery with an aqueous electrolyte based on dilute sulphuric acid, a positive electrode of lead dioxide and a negative electrode of lead.

3.7 nickel oxide-cadmium battery
secondary battery with an alkaline electrolyte, a positive electrode containing nickel oxide and a negative electrode of cadmium.

3.8 stationary battery
secondary battery which is designed for service in a fixed location and is not habitually moved from place to place during the operating life. It is permanently connected to the d.c power supply (fixed installation).

3.9 monobloc battery
battery with multiple separate but electrically connected cell compartments each of which is designed to house an assembly of electrodes, electrolyte, terminals and interconnections and possible separator.

NOTE The cells in a monobloc battery can be connected in series or parallel.

3.10 electrolyte
liquid or solid substance containing mobile ions which render it ionically conductive.

NOTE The electrolyte may be liquid, solid or a gel.

3.11 gassing
gas emission
evolution of gas resulting from the electrolysis of water in the electrolyte of a cell.

3.12 charge
charging (of a battery)
operation during which a secondary cell or battery is supplied with electrical energy from an external circuit which results in chemical changes within a cell and thus storage of energy as chemical energy occurs.

3.13 battery on float charge
secondary battery whose terminals are permanently connected to a source of constant voltage sufficient to maintain the battery approximately fully charged, and which is intended to supply power to an electrical circuit, if the normal supply is temporarily interrupted.