Natursten – Bestämning av böjhållfasthet vid trepuntsbelastning

Natural stone test methods – Determination of flexural strength under concentrated load


Natural stone test methods - Determination of flexural strength under concentrated load

This European Standard was approved by CEN on 25 October 2006.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Contents

Foreword ..............................................................................................................................................................3
1 Scope .............................................................................................................................................................4
2 Normative references .....................................................................................................................................4
3 Principle .......................................................................................................................................................4
4 Symbols ..........................................................................................................................................................4
5 Apparatus ......................................................................................................................................................4
6 Preparation of the specimens ......................................................................................................................5
   6.1 Sampling ..................................................................................................................................................5
   6.2 Test specimens ........................................................................................................................................5
      6.2.1 Surface finish ..................................................................................................................................5
      6.2.2 Dimensions .....................................................................................................................................5
      6.2.3 Tolerance .........................................................................................................................................5
      6.2.4 Planes of anisotropy ....................................................................................................................5
      6.2.5 Conditioning before testing .........................................................................................................5
7 Test procedure .................................................................................................................................................6
8 Expression of the results ................................................................................................................................6
9 Test report ......................................................................................................................................................6
Annex A (normative) Statistical evaluation of the test results ......................................................................12
   A.1 Scope ....................................................................................................................................................12
   A.2 Symbols and definitions .......................................................................................................................12
   A.3 Statistical evaluation of test results ....................................................................................................13
Bibliography ........................................................................................................................................................15
Foreword

This document (EN 12372:2006) has been prepared by Technical Committee CEN/TC 246 “Natural stones”, the secretariat of which is held by UNI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2007, and conflicting national standards shall be withdrawn at the latest by June 2007.

This document supersedes EN 12372:1999.

The change of the specimens’ dimensions requested a revision of this European Standard.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
1 Scope

This European Standard specifies a test method for determination of flexural strength under a concentrated load for natural stone. Both an identification and a technological product testing procedure are included.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 12390 (all parts), *Testing hardened concrete*

3 Principle

The principle of this method is to place a specimen on two rollers and to progressively load the specimen in the middle. The breaking load is measured and the flexural strength calculated.

4 Symbols

For the purposes of this document, the following symbols apply.

- $R_{\text{ef}}$: flexural strength, in Megapascals
- $F$: breaking load, in newtons
- $a$: load rate, in Megapascals/second
- $V$: loading rate, in newtons/second
- $l$: distance between the supporting rollers, in millimetres
- $b$: width of the specimen adjacent to the plane of fracture, in millimetres
- $h$: thickness of the specimen adjacent to the plane of fracture, in millimetres
- $L$: total length of the specimen, in millimetres

5 Apparatus

5.1 A balance capable of weighing the specimen with an accuracy of 0,01 % of the mass of the specimen.

5.2 A ventilated oven capable of maintaining a temperature of (70 ± 5) °C.

5.3 A linear measuring device with an accuracy of 0,05 mm.

5.4 A testing machine of appropriate force, in accordance with the EN 12390 and calibrated according to this European Standard.
5.5 A device for applying loads on the specimen by a centre-point load. It consists of two lower rollers (supporting rollers) and one upper roller (load-applying roller) which shall be centred exactly in the middle between the two supporting rollers (see Figure 1). The distance between the two supporting rollers shall be reported as requested in 6.2.2.

5.6 A room which can be maintained at a temperature of (20 ± 10) °C.

6 Preparation of the specimens

6.1 Sampling

The sampling is not the responsibility of the test laboratory except where specially requested. At least 10 specimens shall be selected from a homogeneous batch (see also 6.2.4).

6.2 Test specimens

6.2.1 Surface finish

As a standard reference, the surface finish of the faces of the specimens shall be sawn, honed or polished (identification test). In case of necessity to test specimens with other surface finishes (e.g. flamed, sandblasted) as required for application, this may be done (technological test). For the technological test the specimens may be final products or sawn from final products. The surface intended for use shall be in contact with the two supporting rollers (facing downwards). In any case the kind of surface finish shall be stated in the report.

6.2.2 Dimensions

For stones with a size of the largest grain lower than 25 mm, preferred dimensions are 50 mm × 50 mm × 300 mm.

Other dimensions are possible, but shall fulfil the following requirements:

— the thickness \( h \) shall be between 25 mm and 100 mm and shall be greater than twice the size of the largest grain in the stone;

— the total length \( L \) shall be equal to six times the thickness;

— the width \( b \) shall be between 50 mm and three times the thickness (50 mm ≤ \( b \) ≤ 3\( h \)), and in no case it shall be less than the thickness.

The distance between the supporting rollers \( l \) shall be equal to five times the thickness.

6.2.3 Tolerance

The tolerance on the distance between the supporting rollers \( l \) shall be ± 1 mm.

6.2.4 Planes of anisotropy

If the stone shows planes of anisotropy (e.g. bedding, foliation) the specimens shall be prepared in accordance with at least one of the arrangements shown in Figures 2 to 4 and the direction of the planes of anisotropy shall be marked on each specimen by at least two parallel lines.

If the use of the stone in respect of the position of the planes of anisotropy is known, the test shall be carried out with the force applied on the face that will be loaded during use.
If the way of use of the stone is not known but the position of the planes of anisotropy is indicated on the specimens (by means of at least two parallel lines), the test shall be carried out on each of the three arrangements shown in Figures 2 to 4; the total number of specimens will then be 3 times 10.

6.2.5 Conditioning before testing

The specimens shall be dried at (70 ± 5) °C to a constant mass.

Constant mass is reached when the difference between two weighings carried out (24 ± 2) h apart is no greater than 0,1 % of the first of the two masses.

After drying and prior to testing the specimens shall be stored at (20 ± 5) °C until the thermal equilibrium is reached. After that the test shall be performed within 24 h.

7 Test procedure

Wipe the surface of the rollers clean and remove any loose grits from the faces of the specimen that will be in contact with the rollers.

The specimen is placed centrally on the supporting rollers (see Figures 1 to 4). The loading roller is placed in the middle of the specimen.

The load is increased uniformly at a rate of (0,25 ± 0,05) MPa/s until the specimen breaks.

NOTE 1 The breaking load is rounded to the nearest 10 N and also the place where the fracture occurs. The width and the thickness of the specimen are measured adjacent to the fracture plane and the dimensions are expressed in millimetres to the nearest 0,1 mm.

NOTE 2 Where the loading rate (\(V\)) is needed in N/s the following equation can be used to determine the required rate in N/s:

\[
V = \frac{2abh^2}{3l} \quad \text{(N/s)}
\]

8 Expression of the results

The flexural strength \(R_{fg}\) of each specimen is calculated using the following equation:

\[
R_{fg} = \frac{3Fl}{2bh^2}
\]

The result shall be expressed in Megapascals to the nearest 0,1 MPa.

If the fracture is situated more than 15 % of the distance between the supporting rollers from the middle of the specimen and/or flaws are present (veins, fissures etc.) it shall be mentioned in the test report.

9 Test report

The test report shall contain the following information:

a) unique identification number of the report;

b) the number, title and date of issue of this European Standard, i.e. EN 12372;