Geografisk information – Struktur för katalogisering av objekttyper (ISO 19110:2005, IDT)

Geographic information – Methodology for feature cataloguing (ISO 19110:2005, IDT)

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1. Scope</td>
<td>1</td>
</tr>
<tr>
<td>2. Conformance</td>
<td>1</td>
</tr>
<tr>
<td>3. Normative references</td>
<td>2</td>
</tr>
<tr>
<td>4. Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>5. Abbreviations</td>
<td>3</td>
</tr>
<tr>
<td>6. Principal requirements</td>
<td>4</td>
</tr>
<tr>
<td>6.1 Feature catalogue</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Information elements</td>
<td>4</td>
</tr>
<tr>
<td>Annex A (normative) Abstract test suite</td>
<td>6</td>
</tr>
<tr>
<td>Annex B (normative) Feature catalogue template</td>
<td>16</td>
</tr>
<tr>
<td>Annex C (informative) Feature cataloguing examples</td>
<td>31</td>
</tr>
<tr>
<td>Annex D (informative) Feature cataloguing concepts</td>
<td>46</td>
</tr>
<tr>
<td>Bibliography</td>
<td>55</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19110 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.
Introduction

Geographic features are real world phenomena associated with a location relative to the Earth, about which data are collected, maintained, and disseminated. Feature catalogues defining the types of features, their operations, attributes, and associations represented in geographic data are indispensable to turning the data into usable information. Such feature catalogues promote the dissemination, sharing, and use of geographic data through providing a better understanding of the content and meaning of the data. Unless suppliers and users of geographic data have a shared understanding of the kinds of real world phenomena represented by the data, users will be unable to judge whether the data supplied are fit for their purpose.

The availability of standard feature catalogues that can be used multiple times will reduce costs of data acquisition and simplify the process of product specification for geographic datasets.

This International Standard provides a standard framework for organizing and reporting the classification of real world phenomena in a set of geographic data. Any set of geographic data is a greatly simplified and reduced abstraction of a complex and diverse world. A catalogue of feature types can never capture the richness of geographic reality. However, such a feature catalogue should present the particular abstraction represented in a given dataset clearly, precisely, and in a form readily understandable and accessible to users of the data.

Geographic features occur at two levels: instances and types. At the instance level, a geographic feature is represented as a discrete phenomenon that is associated with its geographic and temporal coordinates and may be portrayed by a particular graphic symbol. These individual feature instances are grouped into classes with common characteristics: feature types. It is recognized that geographic information is subjectively perceived and that its content depends upon the needs of particular applications. The needs of particular applications determine the way instances are grouped into types within a particular classification scheme. ISO 19109, Geographic information — Rules for application schema specifies how data shall be organized to reflect the particular needs of applications with similar data requirements.

NOTE The full description of the contents and structure of a geographic dataset is given by the application schema developed in compliance with ISO 19109. The feature catalogue defines the meaning of the feature types and their associated feature attributes, feature operations and feature associations contained in the application schema.

The collection criteria used to identify individual real world phenomena and to represent them as feature instances in a dataset are not specified in this International Standard. Because they are not included in the standards, collection criteria should be included separately in the product specification for each dataset.

A standard way of organizing feature catalogue information will not automatically result in harmonization or interoperability between applications. In situations where classifications of features differ, this International Standard may at least serve to clarify the differences and thereby help to avoid the errors that would result from ignoring them. It may also be used as a standard framework within which to harmonize existing feature catalogues that have overlapping domains.
Geographic information — Methodology for feature cataloguing

1 Scope

This International Standard defines the methodology for cataloguing feature types. This International Standard specifies how the classification of feature types is organized into a feature catalogue and presented to the users of a set of geographic data. This International Standard is applicable to creating catalogues of feature types in previously uncatalogued domains and to revising existing feature catalogues to comply with standard practice. This International Standard applies to the cataloguing of feature types that are represented in digital form. Its principles can be extended to the cataloguing of other forms of geographic data.

This International Standard is applicable to the definition of geographic features at the type level. This International Standard is not applicable to the representation of individual instances of each type. This International Standard excludes spatial, temporal, and portrayal schemas as specified in ISO 19107, ISO 19108, and ISO 19117, respectively. It also excludes collection criteria for feature instances.

This International Standard may be used as a basis for defining the universe of discourse being modelled in a particular application, or to standardize general aspects of real world features being modelled in more than one application.

2 Conformance

Because this International Standard specifies a number of options that are not required for all feature catalogues, this clause specifies 12 conformance classes. These classes are differentiated on the basis of three criteria:

a) What elements of a feature type are required in a catalogue:
 1) feature attributes only?
 2) feature attributes and feature associations?
 3) feature attributes, feature associations, and feature operations?

b) Is there a requirement to link feature attributes, feature associations, and feature operations to only one feature type or may they be linked to multiple feature types?

c) Is there a requirement to include inheritance relationships in the feature catalogue?

Annex A specifies a test module for each of the conformance classes, as shown in Table 1.
3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/TS 19103:—1), Geographic information — Conceptual schema language

ISO 19109:—1), Geographic information — Rules for application schema

ISO 19115:2003, Geographic information — Metadata

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1 feature
abstraction of real world phenomena

[ISO 19101]

EXAMPLE The phenomenon named ‘Eiffel Tower’ may be classified with other similar phenomena into a feature type ‘tower’.

NOTE A feature may occur as a type or an instance. Feature type or feature instance should be used when only one is meant.

1) To be published.
4.2 feature association
relationship that links instances of one feature (4.1) type with instances of the same or a different feature type

4.3 feature attribute
characteristic of a feature (4.1)

[ISO 19101]

EXAMPLE 1 A feature attribute named ‘colour’ may have an attribute value ‘green’ which belongs to the data type ‘text’.

EXAMPLE 2 A feature attribute named ‘length’ may have an attribute value ‘82,4’ which belongs to the data type ‘real’.

NOTE A feature attribute has a name, a data type, and a value domain associated to it. A feature attribute for a feature instance also has an attribute value taken from the value domain.

4.4 feature catalogue
catalogue containing definitions and descriptions of the feature (4.1) types, feature attributes (4.3), and feature associations (4.2) occurring in one or more sets of geographic data, together with any feature operations that may be applied

4.5 feature operation
operation that every instance of a feature (4.1) type may perform

EXAMPLE A feature operation upon a ‘dam’ is to raise the dam. The results of this operation are to raise the height of the ‘dam’ and the level of water in a ‘reservoir’.

NOTE Sometimes feature operations provide a basis for feature type definition.

4.6 functional language
language in which feature operations are formally specified

NOTE In a functional language, feature types may be represented as abstract data types.

5 Abbreviations

DIGEST Digital Geographic Information Exchange Standard
FACC Feature and Attribute Coding Catalogue
GFM General Feature Model
HTTP Hyper Text Transfer Protocol
IHO International Hydrographic Organization
TS Technical Specification
UML Unified Modeling Language
URI Uniform Resource Identifier
XML eXtensible Markup Language
6 Principal requirements

6.1 Feature catalogue

A feature catalogue shall present the abstraction of reality represented in one or more sets of geographic data as a defined classification of phenomena. The basic level of classification in a feature catalogue shall be the feature type. A feature catalogue shall be available in electronic form for any set of geographic data that contains features. A feature catalogue may also comply with the specifications of this International Standard independently of any existing set of geographic data.

6.2 Information elements

6.2.1 Introduction

The following clauses specify general and specific requirements for feature catalogue information elements. Annex B specifies detailed requirements. Annex C illustrates the application of these requirements. Annex D discusses the application of feature operations as the conceptual basis for determining feature types in a feature catalogue.

6.2.2 Completeness

A template for the representation of feature classification information is specified in Annex B. A feature catalogue prepared according to this template shall document all of the feature types found in a given set of geographic data. The feature catalogue shall include identification information as specified in Annex B. The feature catalogue shall include definitions and descriptions of all feature types contained in the data, including any feature attributes and feature associations contained in the data that are associated with each feature type, and optionally including feature operations that are supported by the data. To ensure predictability and comparability of feature catalogue content across different applications, it is recommended that the feature catalogue should include only the elements specified in Annex B. To maximize the usefulness of a feature catalogue across different applications, the use of a conceptual schema language to model feature catalogue information is recommended.

NOTE Natural-language definitions, feature-type aliases, criteria for the birth and death of feature instances, and other semantic elements of the feature catalogue may be included in a conceptual schema as structured comments or as attributes.

6.2.3 General requirements

6.2.3.1 Form of names

All feature types, feature attributes, feature associations, association roles, and feature operations included in a feature catalogue shall be identified by a name that is unique within that feature catalogue. If the name of a feature type, feature attribute, feature association, association role, or feature operation appears more than once in that feature catalogue, the definition shall be the same for all occurrences.

6.2.3.2 Form of definitions

Definitions of feature types, feature attributes, feature attribute listed values, feature associations, association roles, and feature operations shall be given in a natural language. These definitions shall be included in the catalogue, unless the catalogue specifies a separate definition source. If the same term appears in both the definition source and the feature catalogue, the definition in the feature catalogue shall apply.

6.2.4 Requirements for feature types

Each feature type shall be identified by a name and defined in a natural language. Each feature type may also be identified by an alphanumeric code that is unique within the catalogue and it may have a set of aliases. The feature catalogue shall also include, for each feature type, its feature operations and associated feature
attributes, feature associations and association roles, if any. The use of functional language specifications to help define feature types is recommended.

6.2.5 Requirements for feature operations

Feature operations, if any, shall be identified and defined for each feature type. Feature attributes involved in each feature operation shall be specified well as any feature types affected by the operation. The definition shall include a natural language definition and may be formally specified in a functional language.

6.2.6 Requirements for feature attributes

Feature attributes, if any, shall be identified and defined for each feature type. The definition shall include a natural language definition and a specified data type for values of the attribute. Each feature attribute may also be identified by an alphanumeric code that is unique within the catalogue.

6.2.7 Requirements for feature attribute listed values

Feature-attribute listed values, if any, shall be labelled for each feature attribute. The label shall be unique within the feature attribute of which it is a listed value. Each listed value may also be identified by an alphanumeric code that is unique within the feature attribute of which it is a listed value.

6.2.8 Requirements for feature associations

Feature associations, if any, shall be named and defined. Each feature association may also be identified by an alphanumeric code that is unique within the catalogue. The names and roles of the feature types that participate in the association shall be specified.

6.2.9 Requirements for association roles

Association roles, if any, shall be named and defined. The name of the feature type that holds the role and the association in which it participates shall be specified.