Hydrometric determinations – Cableway systems for stream gauging (ISO 4375:2000)

Upplysningar om sakinhållet i standarden lämnas av SIS, Swedish Standards Institute, telefon 08 - 555 520 00.

Standarder kan beställas hos SIS Förlag AB som även lämnar allmänna upplysningar om svensk och utländsk standard.
Postadress: SIS Förlag AB, 118 80 STOCKHOLM
Telefon: 08 - 555 523 10. Telefax: 08 - 555 523 11
E-post: sis.sales@sis.se. Internet: www.sis.se
Hydrometric determinations - Cableway systems for stream gauging (ISO 4375:2000)

This European Standard was approved by CEN on 27 February 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>1 Scope</td>
<td>4</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>4</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>4</td>
</tr>
<tr>
<td>4 General description of a cableway system</td>
<td>5</td>
</tr>
<tr>
<td>4.1 Elements of a cableway system</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Cableway supports</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Main track or main cable</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Anchorage</td>
<td>7</td>
</tr>
<tr>
<td>4.5 Tow cable for a bankside system</td>
<td>7</td>
</tr>
<tr>
<td>4.6 Suspension cable</td>
<td>7</td>
</tr>
<tr>
<td>4.7 Instrument carriage for a bankside system</td>
<td>7</td>
</tr>
<tr>
<td>4.8 Personnel carriage</td>
<td>7</td>
</tr>
<tr>
<td>4.10 Winch arrangements for a personnel carriage</td>
<td>7</td>
</tr>
<tr>
<td>4.11 Lightning protection</td>
<td>8</td>
</tr>
<tr>
<td>5 Functional requirements of cableway components</td>
<td>8</td>
</tr>
<tr>
<td>5.1 Safety factors</td>
<td>8</td>
</tr>
<tr>
<td>5.2 Cableway supports</td>
<td>9</td>
</tr>
<tr>
<td>5.3 Selection of main cable or track</td>
<td>9</td>
</tr>
<tr>
<td>5.4 Anchorage</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Backstays</td>
<td>9</td>
</tr>
<tr>
<td>5.6 Tow cable</td>
<td>10</td>
</tr>
<tr>
<td>5.7 Carriages</td>
<td>10</td>
</tr>
<tr>
<td>5.8 Winches</td>
<td>11</td>
</tr>
<tr>
<td>6 Maintenance, examination and testing</td>
<td>12</td>
</tr>
<tr>
<td>6.1 General examination</td>
<td>12</td>
</tr>
<tr>
<td>6.2 Routine inspection</td>
<td>12</td>
</tr>
<tr>
<td>6.3 Static testing</td>
<td>13</td>
</tr>
<tr>
<td>6.4 Lubrication</td>
<td>13</td>
</tr>
<tr>
<td>6.5 Checking the sag</td>
<td>13</td>
</tr>
<tr>
<td>Annex A (informative) Cableway characteristics</td>
<td>14</td>
</tr>
<tr>
<td>Bibliography</td>
<td>29</td>
</tr>
<tr>
<td>Annex ZA (normative)</td>
<td>30</td>
</tr>
</tbody>
</table>
Foreword

The text of ISO 4375:2000 has been prepared by Technical Committee ISO/TC 113 "Hydrometric determinations" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 4375:2004 by Technical Committee CEN/TC 318 "Hydrometry", the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2004, and conflicting national standards shall be withdrawn at the latest by October 2004.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Endorsement notice

The text of ISO 4375:2000 has been approved by CEN as EN ISO 4375:2004 without any modifications.

NOTE Normative references to International Standards are listed in annex ZA (normative).
Hydrometric determinations — Cableway systems for stream gauging

1 Scope

This International Standard defines the requirements for equipment, anchorage, supports and accessories for cableway systems for use in stream gauging. Systems which are operated either entirely from the river bank or from a suspended personnel carriage (also called a “cable car”) are discussed. This International Standard does not concern methods for making a discharge measurement which are described in ISO 748.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 772:1996 Amd 1\(^1\), Hydrometric determinations — Vocabulary and symbols.

3 Terms and definitions

For the purposes of this International Standard, the terms and definitions given in ISO 772, its amendment 1 and ISO 31-3 as well as the following apply.

3.1 cable
wire rope of simple or complex structure or wire cord, fixed or moving in a cableway system

\(^1\) To be published.
4 General description of a cableway system

4.1 Elements of a cableway system

A cableway system can be designed to be operated from the river bank (see Figures 1 and 2) or be designed to be operated from a suspended personnel carriage (Figure 3). The general arrangement of the following elements are common to both systems:

a) towers or cableway supports;

b) track or main cable;

c) anchorage;

d) backstays;

e) suspension cable.

The main differences are:

— the carriage of a bankside system requires a tow cable;

— a bankside system requires a more complicated winch arrangement;

— the personnel carriage has to provide a safe platform for the operator;

— more stringent design requirements may apply to a system which employs a personnel carriage.

![Diagram of a cableway system](https://en.wikipedia.org/wiki/Cableway#/media/File:EN_ISO_4375._F1.png)

Figure 1 — Cableway system — Bankside operation, with loop-traversing cable and spooled sounding cable

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Backstay</td>
</tr>
<tr>
<td>2</td>
<td>Traversing cable return pulley</td>
</tr>
<tr>
<td>3</td>
<td>Track or main cable</td>
</tr>
<tr>
<td>4</td>
<td>Traveller and/or instrument carriage</td>
</tr>
<tr>
<td>5</td>
<td>Current meter</td>
</tr>
<tr>
<td>6</td>
<td>Sinker or sounding weight</td>
</tr>
<tr>
<td>7</td>
<td>Distance measurement</td>
</tr>
<tr>
<td>8</td>
<td>Depth measurement</td>
</tr>
<tr>
<td>9</td>
<td>Cable drum</td>
</tr>
</tbody>
</table>
Key
1 Track or main cable
2 Suspension cable
3 Tow cable

Figure 2 — Cableway system — Bankside operation, with spooled tow cable and spooled sounding cable

Key
1 Tower
2 Suspension cable
3 Personnel carriage
4 Track or main cable
5 Current meter
6 Sounding weight
7 To anchorage
8 Stayline

Figure 3 — Cableway system — Suspended personnel carriage
4.2 Cableway supports
The cableway supports, one on each bank, support the main cable span across the stream. They may also provide mountings for the winch and the pulleys (sheaves) carrying the tow and suspension cables.

4.3 Main track or main cable
The track or main cable is designed to carry the whole suspended load. The track may be attached directly to stayed cableway supports or be supported on saddles on the cableway supports and led directly to an anchorage.

4.4 Anchorage
Anchorages are required to carry the loads induced in the cableway and tower system. Depending upon the design of the system, they may be anchorage points for track and backstays or guy-lines, tower foundations subject to compression or tower foundations subject to compression and moment.

4.5 Tow cable for a bankside system
The tow cable is required to move and position the instrument carriage. Generally the tow cable is arranged as an endless loop from the instrument carriage over guiding sheaves on the winch tower, round a driving pulley or drum, across to an idler pulley (sheave) on the tower on the opposite bank and back to the carriage (Figure 1). An alternate arrangement uses a spooled tow cable with a single fixing point on the carriage. This arrangement depends upon the equal and opposite force provided by the suspension cable (Figure 2).

4.6 Suspension cable
The suspension cable provides the means of raising and lowering sensing or sampling equipment in the stream. The free end of the cable is fitted with connectors to attach equipment and sounding weights. The suspension cable is likely to contain an insulated conducting core to provide a signal path from suspended instruments.

4.7 Instrument carriage for a bankside system
The instrument carriage is provided with one or more track wheels running on the main cable (track), a pulley to support the suspension cable and a point of attachment for the tow (traveller) cable.

4.8 Personnel carriage
The carriage from which gauging observations are made, travels along the main cable. It is suspended from track wheels running on the main cable. The carriage may be moved along the main cable manually or by a power unit. The carriage can be designed to be operated from either the standing or sitting position or both. A cableway employing a personnel carriage shall comply with the safety requirements for passenger cableways where such standards exist specially for horizontal fixed cableways, in all aspects not covered by this International Standard.

4.9 Winch arrangements for a bankside system
A double drum winch is one that provides both traversing and sounding functions within one piece of equipment. One drum controls the suspension cable, the other controls the movement of the carriage. The latter may be a spooling drum or take the form of a friction drive pulley driving an “endless” loop. Both drums may be driven simultaneously in traversing mode or, in sounding mode, the traversing drum may be locked to allow operation of the suspension cable drum only. This operation may also be carried out using two single drum winches. Measuring counters may be fitted to record horizontal and vertical cable movement.

4.10 Winch arrangements for a personnel carriage
A winch (sounding reel) is attached to the carriage (cable car) to raise and lower the sounding weight. The winch is required to operate properly under the load of the sounding weight but both the winch and its mountings should be capable of accommodating the breaking load of the suspension cable with a factor of safety of two. The winch may be hand operated or power driven.
4.11 Lightning protection

In areas where electrical storms are considered a risk to cableway operators, provision shall be made to reduce the likelihood of injury from a lightning strike on the cableway system. In countries where lightning is infrequent and lightning protection not considered necessary, work instructions should allow for abandonment of operations in the event of an electrical storm.

5 Functional requirements of cableway components

5.1 Safety factors

5.1.1 General

Factors of safety shall be applied to ensure that the equipment is able to cope with normal working without failure and to protect the operator in case of abnormal but foreseeable incidents.

The most likely risk of failure of properly maintained cableway systems lies with the possibility of the suspended equipment becoming caught up on a large floating object. Trees being carried down on a flood are the most likely source of this danger. The excess loading is applied to the system through the suspension cable. In a bankside system, the tension in this cable is equal to, and balanced by, the tension in the “return” side of the tow cable. In both bankside systems and systems with personnel carriages, the load in the suspension cable is also applied to the main cable (track) through the carriage.

For both arrangements, the factor of safety for normal working shall be achieved by specifying the suspension cable in relation to a maximum working load. The specification of all other cables shall be with respect to the breaking load of the specified suspension cable.

5.1.2 Suspension cable

The suspension cable shall be selected to provide a minimum factor of safety of 5 in relation to the maximum authorized suspended load. The maximum authorized suspended load is the sum of the maximum authorized sounding weight plus an allowance for the mass of sensing/sampling equipment.

5.1.3 Tow cable

The tow (traversing) cable shall be selected to provide a factor of safety of 1,25 with respect to the breaking load of the suspension cable.

5.1.4 Track cable

The track cable shall be selected to provide a factor of safety, with respect to the breaking load of the suspension cable, as follows:

a) bankside cableway system with instrument carriage: 2
b) cableway with suspended personnel carriage: 5

5.1.5 Marking

Cableways shall be clearly marked to indicate maximum authorized sounding weights and approved suspension cable specification. The use at an established site, of a suspension cable with a breaking load greater than specified, reduces the factor of safety with respect to the track cable.
5.2 Cableway supports

5.2.1 Approaches

A safe and convenient approach should be available throughout the year on both banks so that an observer may have easy access to the installation for inspection and operation. It is recognized that access to the far bank may not always be possible in difficult terrain. If this is the case, it should be recognized in the operation procedures for that site.

5.2.2 Design load

The cableway supports shall be designed to withstand the breaking load of the track cable selected, together with any relevant wind loading. Attention shall be paid to lateral loading as a consequence of drag on the suspended load and allowance made for the extreme condition as the suspension cable approaches breaking point.

5.2.3 Foundation placement

The foundation of the tower should extend from below the frost line to at least 300 mm above ground level. The size and design of the foundation is dependant on soil conditions and is beyond the scope of this International Standard.

5.2.4 Height

The height of the cableway support shall be such that all parts of the equipment, suspended from the centre of the span, will be at least 1 m above the highest flood level to be measured, but at no time present a hazard to navigation or wildlife. Consideration should also be given to marking the cableway in areas where canoes and aircraft are used in its vicinity. In certain localities, high structures may be governed by regulations requiring the provision of aircraft warning lights and warning signs on the track cable.

5.2.5 Corrosion protection

Materials used in the construction of cableway supports shall be protected against corrosion.

5.3 Selection of main cable or track

The main cable shall be corrosion resistant. Wire rope may be used for spans up to 300 m. For longer spans it may be necessary to use special cables. Guidance on selecting cable sizes is given in annex A.

5.4 Anchorage

5.4.1 Design

Anchorages shall be designed, in accordance with standard engineering practice, to withstand such forces as may be induced upon them at the point of failure of the main cable.

5.4.2 Inspection accessibility

The point at which a cable is attached to an anchorage shall be so placed that it can be easily inspected.

5.5 Backstays

Where backstays are provided as part of the tower design they shall be of corrosion-resistant steel and be able to withstand the forces developed at the point of failure of the main cable.