Space product assurance – Thermal vacuum outgassing test for the screening of space materials
Space product assurance - Thermal vacuum outgassing test for the screening of space materials

Assurance produit des projets spatiaux - Essai de dégazage sous vide thermique pour sélection des matériaux d'un projet spatial

Raumfahrtproduktssicherung - Thermal-Vakuum-Ausgastest für die Auswahl von Raumfahrtmaterialien

This European Standard was approved by CEN on 22 December 2001.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1 Scope</td>
<td>7</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>7</td>
</tr>
<tr>
<td>3 Terms, definitions and abbreviated terms</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Terms and definitions</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Abbreviated terms</td>
<td>9</td>
</tr>
<tr>
<td>4 Preparatory conditions</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Hazards, health and safety precautions</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Material samples</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1 Configuration</td>
<td>9</td>
</tr>
<tr>
<td>4.2.2 Cleaning</td>
<td>10</td>
</tr>
<tr>
<td>4.2.3 Handling and storage</td>
<td>10</td>
</tr>
<tr>
<td>4.2.4 Identification of materials</td>
<td>10</td>
</tr>
<tr>
<td>4.3 Facilities</td>
<td>11</td>
</tr>
<tr>
<td>4.3.1 Cleanliness</td>
<td>11</td>
</tr>
<tr>
<td>4.3.2 Environmental conditions</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Equipment</td>
<td>11</td>
</tr>
<tr>
<td>4.4.1 Test equipment</td>
<td>11</td>
</tr>
<tr>
<td>4.4.2 Special apparatus</td>
<td>11</td>
</tr>
<tr>
<td>5 Test procedure</td>
<td>13</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>5.2 Test process for general spacecraft application</td>
<td>13</td>
</tr>
<tr>
<td>5.2.1 Cleaning of cups and collector plates</td>
<td>13</td>
</tr>
<tr>
<td>5.2.2 Conditioning of cups and collector plates</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3 Conditioning of samples</td>
<td>13</td>
</tr>
<tr>
<td>5.2.4 Weighing of samples</td>
<td>13</td>
</tr>
<tr>
<td>5.2.5 Weighing of collector plates</td>
<td>13</td>
</tr>
<tr>
<td>5.2.6 Loading of system</td>
<td>13</td>
</tr>
<tr>
<td>5.2.7 Pump-down and heating</td>
<td>13</td>
</tr>
<tr>
<td>5.2.8 End of test</td>
<td>13</td>
</tr>
<tr>
<td>5.2.9 Gas inlet</td>
<td>14</td>
</tr>
<tr>
<td>5.2.10 Unloading of system</td>
<td>14</td>
</tr>
<tr>
<td>5.2.11 Storage of collector plates</td>
<td>14</td>
</tr>
<tr>
<td>5.2.12 Infrared analyses</td>
<td>14</td>
</tr>
</tbody>
</table>
5.2.13 Cleaning of system ... 14
5.2.14 Improved sensitivity of the CVCM measurements 14

6 Reporting of test data ... 18

7 Acceptance limits .. 18

7.1 Acceptance limits for a retest of the material 18

7.2 Acceptance limits for application of a material 18

7.2.1 General ... 18
7.2.2 Corrective actions for high outgassing materials 18
7.2.3 Water absorption of materials ... 19
7.2.4 More stringent outgassing requirements 19

8 Quality assurance ... 19

8.1 General .. 19
8.2 Data ... 19
8.3 Nonconformance ... 20
8.4 Calibration ... 20
8.5 Traceability ... 20

9 Audit of the Micro-VCM test apparatus 21

9.1 General .. 21

9.2 Initial audit of the system (acceptance) ... 21

9.2.1 Inspection of apparatus and associated equipment 21
9.2.2 Performing a blank test ... 22
9.2.3 Performing an actual test ... 22
9.2.4 Nonconformances ... 22
9.2.5 Reporting of audit findings .. 22

9.3 Annual regular review (maintenance) of the system 23

9.3.1 Inspection of apparatus and associated equipment 23
9.3.2 Mutual comparability evaluation (testing) 23
9.3.3 Nonconformance ... 23
9.3.4 Reporting of audit findings .. 23

9.4 Special review .. 23

9.4.1 General ... 23
9.4.2 Preservation of samples ... 23

Annex A (informative) Examples of filled in data sheets 24

Annex B (informative) Example of a certificate of conformance 28

Figures

Figure 1 — Micro-VCM equipment .. 12

Figure 2 — Flow chart of preparation and initial measurements 15

Figure 3 — Flow chart of test process .. 16
EN 14091:2002 (E)

Figure 4 — Parameters for sample .. 17
Figure 5 — Parameters for collector plate ... 17

Tables

Table 1 — Deduced outgassing properties ... 21
Table A.1 - Example of filled in materials identification card............. 25
Table A.2 - Example of filled in Micro-VCM worksheet 26
Table A.3 - Example of filled in Micro-VCM datasheet 27
Foreword

This document EN 14091:2002 has been prepared by CMC.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2002, and conflicting national standards shall be withdrawn at the latest by August 2002.

It is based on a previous version¹ originally prepared by the ECSS product assurance working group, reviewed by the ECSS Technical Panel and approved by the ECSS Steering Board. The European Cooperation for Space Standardization (ECSS) is a cooperative effort of the European Space Agency, National Space Agencies and European industry associations for the purpose of developing and maintaining common standards.

This standard is one of the series of space standards intended to be applied together for the management, engineering and product assurance in space projects and applications.

Requirements in this standard are defined in terms of what shall be accomplished, rather than in terms of how to organize and perform the necessary work. This allows existing organizational structures and methods to be applied where they are effective, and for the structures and methods to evolve as necessary without rewriting the standards.

The formulation of this standard takes into account the existing ISO 9000 family of documents.

Annexes A and B are informative.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

¹) ECSS-Q-70-02A
Introduction

The acceleration of the outgassing process results from exposure to vacuum at an elevated temperature. The method described in this standard gives reliable data for the outgassing properties of materials at 125 °C. However, some materials have different kinetics at other temperatures. Nevertheless, comparisons are possible at other temperatures, provided that the kinetics of the outgassing phenomena are similar (defined activation energy of similar magnitude for the materials to be compared). Furthermore, the measurement of contamination potential is comparative and strictly valid only for collectors at 25 °C with similar sticking coefficients.

A basic screening test method is detailed in this standard. The data obtained are not intended to be used for contamination predictions; however, some worst-case analyses can be made with the test data, the masses of the relevant materials and the view factors with respect to contamination-sensitive elements.
1 Scope

This European Standard specifies a thermal vacuum test to determine the outgassing properties of materials proposed for use in the fabrication of spacecraft and associated equipment, for vacuum facilities used for flight hardware tests and for certain launcher hardware.

This standard covers the following:

— critical design parameters of the test system;
— critical test parameters such as temperature, time, pressure;
— material sample preparation;
— conditioning parameters for samples and collector plates;
— presentation of the test data;
— acceptance criteria;
— certification of test systems and their operators by audits and round robin tests.

The test described in this standard is applicable for all unmanned spacecraft, launchers, payloads, and experiments. The test is also valid for external hardware of inhabited space systems and for hardware to be used in terrestrial vacuum test facilities.

The acceptance criteria for a material, based upon the outgassing test data, depends upon the application and location of the material and can be more severe than the standard requirements as given in 7.2.

2 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text, and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

EN 13701, Space systems - Glossary of terms.
EN 14097, Space product assurance — Nonconformance control system.
ECSS-Q-20, Space product assurance — Quality assurance.
ECSS-Q-70, Space product assurance — Materials, mechanical parts and processes.

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this European Standard, the terms and definitions given in EN 13701 and ECSS-Q-70 and the following apply.
3.1.1 **bakeout**
activity of increasing the temperature of hardware to accelerate its outgassing rates with the intent of reducing the content of molecular contaminants within the hardware

NOTE Bakeout is usually performed in a vacuum environment but may be done in a controlled atmosphere.

3.1.2 **cleanroom**
room in which the concentration of airborne particles is controlled, and which is constructed and used in a manner to minimize the introduction, generation, and retention of particles inside the room, and in which other relevant parameters, e.g. temperature, humidity, and pressure, are controlled as necessary

[ISO 14644-1:1999]

3.1.3 **collected volatile condensable material (CVCM)**
quantity of outgassed matter from a test specimen that condenses on a collector maintained at a specific temperature for a specific time

NOTE CVCM is expressed as a percentage of the initial specimen mass and is calculated from the condensate mass determined from the difference in mass of the collector plate before and after the test.

3.1.4 **outgassing**
release of gaseous species from a specimen under high vacuum conditions

3.1.5 **quartz crystal microbalance (QCM)**
device for measuring small quantities of mass deposited on a quartz crystal using the properties of a crystal oscillator

3.1.6 **recovered mass loss (RML)**
total mass loss of the specimen itself without the absorbed water (RML = TML - WVR)

NOTE The RML is introduced because water is not always seen as a critical contaminant in spacecraft materials.

3.1.7 **sticking coefficient**
probability that a molecule, colliding with a surface, stays on that surface before thermal re-evaporation of that molecule occurs

3.1.8 **total mass loss (TML)**
total mass loss of material outgassed from a specimen that is maintained at a specific constant temperature and operating pressure for a specified time

NOTE TML is calculated from the mass of the specimen as measured before and after the test and is expressed as a percentage of the initial specimen mass.

3.1.9 **water vapour regained (WVR)**
mass of the water vapour regained by the specimen after the optional reconditioning step

NOTE WVR is calculated from the differences in the specimen mass determined after the test for TML and CVCM and again after exposure to atmospheric conditions and 65 % relative humidity at room temperature (22 ± 3) °C.
3.2 Abbreviated terms

The following abbreviated terms are defined and used within this standard.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOX</td>
<td>atomic oxygen</td>
</tr>
<tr>
<td>CVCM</td>
<td>collected volatile condensable material</td>
</tr>
<tr>
<td>DML</td>
<td>declared material list</td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetrafluorethylene</td>
</tr>
<tr>
<td>QCM</td>
<td>quartz crystal microbalance</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RML</td>
<td>recovered mass loss</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>TML</td>
<td>total mass loss</td>
</tr>
<tr>
<td>VCM</td>
<td>volatile condensable material</td>
</tr>
<tr>
<td>WVR</td>
<td>water vapour regained</td>
</tr>
</tbody>
</table>

4 Preparatory conditions

4.1 Hazards, health and safety precautions

Particular attention shall be paid to health and safety precautions. A safety check-list is produced below.

a. Control and minimize hazards to personnel, equipment and materials.

b. Locate items and controls in such a way that personnel are not exposed to hazards such as burns, electric shock, cutting edges, sharp points or toxic atmospheres.

c. Provide suitable warning and caution notes in operations, storage, transport, testing, assembly, maintenance and repair instructions and distinctive markings on hazardous items, equipment or facilities for personal protection.

4.2 Material samples

4.2.1 Configuration

4.2.1.1
If the material is made up of several items, it shall be prepared according to the relevant process specification or manufacturer’s data in such a quantity as to provide representative samples (a minimum of 12 g, 10 g for the initial test and 2 g for subsequent retest, if proved necessary). The material sample supplied shall be made according to the same process parameters (e.g. curing and baking) as the relevant material to be applied for spacecraft use.

4.2.1.2
The material cuttings are in general made by the test house concerned. Three test specimens of each material shall be prepared as follows: