Verktygsmaskiner – Fräsar för höghastighetsbearbetning – Säkerhetskrav
(ISO 15641:2001)

Milling cutters for high speed machining – Safety requirements
(ISO 15641:2001)

Milling cutters for high speed machining - Safety requirements
(ISO 15641:2001)

Fraises pour usinage à grande vitesse - Prescriptions de sécurité (ISO 15641:2001)
Fräswerkzeuge für die Hochgeschwindigkeitsbearbeitung - Sicherheitstechnische Anforderungen (ISO 15641:2001)
Contents

Foreword ... 3

Introduction ... 3

1 Scope .. 3

2 Normative references ... 5

3 Terms and definitions .. 6
 3.1 Tool classification terms ... 6
 3.1.1 solid or one-piece cutter .. 6
 3.1.2 composite cutter ... 6
 3.1.3 complex cutter ... 6
 3.2 Types of fixing ... 6
 3.2.1 bonding ... 6
 3.2.2 separable ... 6
 3.2.3 friction lock ... 6
 3.2.4 form lock ... 6
 3.3 Terms for the designation of geometric parameters .. 6
 3.3.1 maximum diameter of tool D .. 6
 3.3.2 critical diameter d for bending ... 8
 3.3.3 protruding tool length l ... 8
 3.4 Terms for the designation of mechanical parameters .. 8
 3.4.1 mass of milling cutter m ... 8
 3.4.2 component masses m ... 8
 3.5 Terms for the designation of load parameters .. 8
 3.5.1 maximum rotational speed nmax ... 8
 3.5.2 rotational speed for test ... 8

4 Hazards ... 8
 4.1 Effects which generate hazards ... 8
 4.1.1 Primary hazards ... 8
 4.1.2 Handling hazards ... 8
 4.2.1 Body failure ... 9
 4.2.2 Failure of cutting element fixing .. 9
 4.2.3 Failure of cutting element ... 9

5 Safety requirements and/or measures .. 9
 5.1 Providing safety by design ... 9
 5.2 Importance of balance .. 9
 5.3 Integrity of manufacturing ... 10
 5.4 Centrifugal force type testing ... 10
 5.4.1 General requirements ... 10
 5.4.2 Testing of solid, one-piece or composite cutters .. 10
 5.4.3 Testing of complex cutters ... 11
 5.4.4 Duration of rotational speed for test .. 11

6 Marking of milling cutters .. 11

7 Documentation and information for use .. 11

Annex A (informative) Indications for design relative to hazards .. 12
 A.1 Indications for design relative to hazards .. 12
 A.2 Total tool mass or tool component masses .. 12
 A.3 Unbalance .. 12
 A.4 Tool design .. 12

Annex B (informative) Explanatory notes to the scope ... 14
Foreword

The text of EN ISO 15641:2001 has been prepared by Technical Committee CEN/TC 143 "Machine tools – Safety", the secretariat of which is held by SNV, in collaboration with Technical Committee ISO/TC 29 "Small tools".

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2002, and conflicting national standards shall be withdrawn at the latest by March 2002.

The annexes A and B are informative.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Introduction

This standard is intended to assist designers, manufacturers and suppliers of milling cutters to satisfy their obligations in respect of high speed machining applications. It defines requirements for design, confirmation testing and information for use that manufacturers and suppliers are to provide.

The prime objective is to ensure that milling cutters, employed for high speed machining, will be able to safely withstand the quadratic increase in centrifugal force resulting from their application at increased rotational speed.

It is based upon a collaborative German research project established to investigate the suitability of milling cutters for use in high speed machining operations.

This standard deals only with the tool and is not sufficient alone to ensure the safety. The safety of machinery is dealt with by other specific safety standards.

This standard takes account of cutting conditions only by requiring the manufacturer to provide application information.

Informative annex A provides guidance for reduction of hazards by design and informative annex B explains the scope limits.

1 Scope

This standard deals with the principle hazards arising from use of milling cutters, e.g. milling cutters according to ISO 3855, used for high speed machining (chip removal machining at increased peripheral speeds) on metal working machine tools and prescribes safety requirements.

It specifies design methods, centrifugal force test procedures, operational limits and the provision of information that will lead to minimisation or elimination of these hazards.

The standard is applicable to milling cutters which are intended for operation at speeds in accordance with figures 1 and 2.

These figures respectively define the rotational speed limits and peripheral speed limits for specific cutter diameters.

NOTE A detailed explanation is provided in annex B.
Figure 1 - Rotational speed n vs maximum diameter of tool D

- **a** Maximum diameter of tool D in mm
- **b** Rotational speed n in min$^{-1}$
2 Normative references

This European Standard incorporates by dated or undated reference provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

EN 1070
Safety of machinery – Terminology

ISO 1940-1:1986
Mechanical vibration – Balance quality requirements of rigid rotors – Part 1: Determination of permissible residual unbalance

ISO 3002-1
Basic quantities in cutting and grinding – Part 1: Geometry of the active part of cutting tools – General terms, reference systems, tool and working angles, chip breakers

ISO 3855
Milling cutters – Nomenclature
3 Terms and definitions

For the purposes of this standard the terms and definitions given in EN 1070, ISO 3002-1 and the following apply:

3.1 Tool classification terms

3.1.1 solid or one-piece cutter
milling cutter which has no detachable parts. Its body and cutting part or parts are one piece.

3.1.2 composite cutter
milling cutter in which the cutting part or parts (e.g. tips) are attached to the body by material bonding (e.g. by brazing).

3.1.3 complex cutter
milling cutter in which one or more parts (e.g. indexable inserts, cartridges, clamping elements) are attached to the body by mechanical fastening (e.g. key bolt, screw bolt or clamp bolt fixing which operate by friction lock or form lock principles).

3.2 Types of fixing

3.2.1 bonding
securing of cutter parts with material bonding such as brazing, welding or gluing.

3.2.2 separable
securing of cutter parts by detachable fastening(s). Examples are friction lock and form lock fixings, or a combination of these, which can be mounted and detached repeatedly.

3.2.3 friction lock
means of securing cutter parts where friction force prevents the movement of parts in use.

3.2.4 form lock
means of securing cutter parts where the shape and arrangement of parts prevents their movement in use.

3.3 Terms for the designation of geometric parameters

3.3.1 maximum diameter of tool \(D \)
maximum diameter of the circle created by cutter rotation. See \(D \) in figures 3, 4 and 5.