Electrically propelled road vehicles – Test specification for lithium-ion traction battery packs and systems – Part 3: Safety performance requirements (ISO 12405-3:2014, IDT)
Standarter får världen att fungera

SIS (Swedish Standards Institute) är en fristående ideell förening med medlemmar från både privat och offentlig sektor. Vi är en del av det europeiska och globala nätverk som utarbetar internationella standarder. Standarder är dokumenterad kunskap utvecklad av framstående aktörer inom industri, näringsliv och samhälle och befrämjar handel över gränser, bidrar till att processer och produkter blir säkrare samt effektiviserar din verksamhet.

Delta och påverka
Som medlem i SIS har du möjlighet att påverka framtida standarder inom ditt område på nationell, europeisk och global nivå. Du får samtidigt tillgång till tidig information om utvecklingen inom din bransch.

Ta del av det färdiga arbetet

Utveckla din kompetens och lyckas bättre i ditt arbete

Vill du veta mer om SIS eller hur standarder kan effektivisera din verksamhet är du välkommen in på www.sis.se eller ta kontakt med oss på tel 08-555 523 00.

Standards make the world go round

SIS (Swedish Standards Institute) is an independent non-profit organisation with members from both the private and public sectors. We are part of the European and global network that draws up international standards. Standards consist of documented knowledge developed by prominent actors within the industry, business world and society. They promote cross-border trade, they help to make processes and products safer and they streamline your organisation.

Take part and have influence
As a member of SIS you will have the possibility to participate in standardization activities on national, European and global level. The membership in SIS will give you the opportunity to influence future standards and gain access to early stage information about developments within your field.

Get to know the finished work
We offer our customers everything in connection with standards and their application. You can purchase all the publications you need from us - everything from individual standards, technical reports and standard packages through to manuals and online services. Our web service e-nav gives you access to an easy-to-navigate library where all standards that are relevant to your company are available. Standards and manuals are sources of knowledge. We sell them.

Increase understanding and improve perception
With SIS you can undergo either shared or in-house training in the content and application of standards. Thanks to our proximity to international development and ISO you receive the right knowledge at the right time, direct from the source. With our knowledge about the potential of standards, we assist our customers in creating tangible benefit and profitability in their organisations.

If you want to know more about SIS, or how standards can streamline your organisation, please visit www.sis.se or contact us on phone +46 (0)8-555 523 00

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Symbols and abbreviated terms</td>
<td>4</td>
</tr>
<tr>
<td>5 General requirements</td>
<td>5</td>
</tr>
<tr>
<td>5.1 General conditions</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Test sequence plan</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Preparation of the DUT for testing</td>
<td>6</td>
</tr>
<tr>
<td>5.4 Pre-conditioning cycles</td>
<td>7</td>
</tr>
<tr>
<td>5.5 General safety requirements</td>
<td>7</td>
</tr>
<tr>
<td>6 Mechanical tests</td>
<td>7</td>
</tr>
<tr>
<td>6.1 Vibration</td>
<td>7</td>
</tr>
<tr>
<td>6.2 Mechanical shock</td>
<td>8</td>
</tr>
<tr>
<td>7 Climatic tests</td>
<td>8</td>
</tr>
<tr>
<td>7.1 Dewing (temperature change)</td>
<td>8</td>
</tr>
<tr>
<td>7.2 Thermal shock cycling</td>
<td>9</td>
</tr>
<tr>
<td>8 Simulated vehicle accidents</td>
<td>9</td>
</tr>
<tr>
<td>8.1 Inertial load at vehicle crash</td>
<td>9</td>
</tr>
<tr>
<td>8.2 Contact force at vehicle crash</td>
<td>11</td>
</tr>
<tr>
<td>8.3 Water immersion</td>
<td>14</td>
</tr>
<tr>
<td>8.4 Exposure to fire</td>
<td>14</td>
</tr>
<tr>
<td>9 Electrical tests</td>
<td>16</td>
</tr>
<tr>
<td>9.1 Short circuit</td>
<td>16</td>
</tr>
<tr>
<td>10 System functionality tests</td>
<td>16</td>
</tr>
<tr>
<td>10.1 Overcharge protection</td>
<td>16</td>
</tr>
<tr>
<td>10.2 Overdischarge protection</td>
<td>17</td>
</tr>
<tr>
<td>10.3 Loss of thermal control/cooling</td>
<td>17</td>
</tr>
<tr>
<td>Annex A (informative) Battery systems and related parts</td>
<td>19</td>
</tr>
<tr>
<td>Annex B (informative) Description of the screen referenced in 8.4 Exposure to fire</td>
<td>23</td>
</tr>
<tr>
<td>Bibliography</td>
<td>24</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 21, Electrically propelled road vehicles.

ISO 12405 consists of the following parts, under the general title Electrically propelled road vehicles — Test specification for lithium-ion traction battery packs and systems:

— Part 1: High-power applications
— Part 2: High-energy applications
— Part 3: Safety performance requirements
Introduction

Lithium-ion battery systems are efficient rechargeable energy storage systems for electrically propelled road vehicles. The requirements for lithium-ion battery systems to be used as power source for the propulsion of electric road vehicles are significantly different to those batteries used for consumer electronics or for stationary applications.

Lithium-ion batteries can store electricity at relatively high-energy density compared to other battery chemistries currently available. Under current state of art, most lithium-ion batteries use organic electrolytes which are classified as Class 3 “flammable liquid” under the “UN Recommendations on the Transport of Dangerous Goods — Model Regulations”. Therefore, mitigating potential hazards associated with fire or explosion of lithium-ion batteries is considered an important issue.

This part of ISO 12405 provides specific test procedures and related requirements to ensure an appropriate and acceptable level of safety of lithium-ion battery systems specifically developed for propulsion of road vehicles.
Electrically propelled road vehicles — Test specification for lithium-ion traction battery packs and systems —

Part 3:
Safety performance requirements

1 Scope
This part of ISO 12405 specifies test procedures and provides acceptable safety requirements for voltage class B lithium-ion battery packs and systems, to be used as traction batteries in electrically propelled road vehicles. Traction battery packs and systems used for two-wheel or three-wheel vehicles are not covered by this part of ISO 12405. This part of ISO 12405 is related to the testing of safety performance of battery packs and systems for their intended use in a vehicle. This part of ISO 12405 is not intended to be applied for the evaluation of the safety of battery packs and systems during transport, storage, vehicle production, repair, and maintenance services.

2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6469-1, Electrically propelled road vehicles — Safety specifications — Part 1: On-board rechargeable energy storage system (RESS)

ISO 6469-3, Electrically propelled road vehicles — Safety specifications — Part 3: Protection of persons against electric shock

ISO/TR 8713, Electrically propelled road vehicles — Vocabulary

ISO 12405-1:2011, Electrically propelled road vehicles — Test specification for lithium-ion traction battery packs and systems — Part 1: High-power applications

ISO 12405-2:2012, Electrically propelled road vehicles — Test specification for lithium-ion traction battery packs and systems — Part 2: High-energy applications

ISO 20653, Road vehicles — Degrees of protection (IP code) — Protection of electrical equipment against foreign objects, water and access

3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/TR 8713 and the following apply.

3.1 battery control unit
BCU
electronic device that controls, manages, detects, or calculates electric and thermal functions of the battery system that provides communication between the battery system and other vehicle controllers

Note 1 to entry: See also Annex A for further explanation.
3.2 battery pack
energy storage device that includes cells or cell assemblies normally connected with cell electronics, voltage class B circuit, and overcurrent shut-off device, including electrical interconnections and interfaces for external systems

Note 1 to entry: For further explanation, see A.2.

Note 2 to entry: Examples of external systems are cooling, voltage class B, auxiliary voltage class A, and communication.

3.3 battery pack subsystem
representative portion of the battery pack

3.4 battery system
energy storage device that includes cells or cell assemblies or battery pack(s), as well as electrical circuits and electronics

Note 1 to entry: For further explanation, see A.3.1 and A.3.2. Battery system components can also be distributed in different devices within the vehicle.

Note 2 to entry: Examples of electronics are the BCU and contactors.

3.5 bus
vehicles designed and constructed for the carriage of passengers, comprising more than eight seats in addition to the driver’s seat, and having a maximum mass exceeding 5 t

3.6 capacity
total number of ampere-hours that can be withdrawn from a fully charged battery under specified conditions

3.7 cell electronics
electronic device that collects and possibly monitors thermal or electric data of cells or cell assemblies and contains electronics for cell balancing, if necessary

Note 1 to entry: The cell electronics can include a cell controller. The functionality of cell balancing can be controlled by the cell electronics or it can be controlled by the BCU.

3.8 customer
party that is interested in using the battery pack or system and, therefore, orders or performs the test

EXAMPLE A vehicle manufacturer.

3.9 device under test
DUT
in this part of ISO 12405, a battery pack or battery system

3.10 explosion
sudden release of energy sufficient to cause pressure waves and/or projectiles that can cause structural and/or physical damage to the surroundings of the DUT

Note 1 to entry: The kinetic energy of flying debris from the battery pack or system can be sufficient to cause damage to the surroundings of the DUT as well.
3.11 fire
continuous emission of flames from a DUT (approximately more than 1 s)

Note 1 to entry: Sparks and arcing are not considered as flames.

3.12 heavy-duty truck
vehicle designed and constructed for the carriage of goods and having a maximum mass exceeding 12 t

3.13 high-energy application
characteristic of device or application for which the numerical ratio between maximum allowed electric power output (power in W) and electric energy output (energy in Wh) at a 1 C discharge rate at RT for a battery pack or system is typically lower than 10

Note 1 to entry: Typically, high-energy battery packs and systems are designed for applications in BEVs.

3.14 high-power application
characteristic of device or application for which the numerical ratio between maximum allowed electric power output (power in W) and electric energy output (energy in Wh) at a 1 C discharge rate at RT for a battery pack or system is typically equal to or higher than 10

Note 1 to entry: Typically, high-power battery packs and systems are designed for application in HEVs and FCVs.

3.15 isolation resistance
resistance between live parts of the voltage class B electric circuit and the electric chassis, as well as the voltage class A system

3.16 leakage
escape of liquid or gas from a DUT except for venting

3.17 maximum working voltage
highest value of a.c. voltage (rms) or of d.c. voltage, which can occur in an electrical system under any normal operating conditions according to the battery manufacturer's specifications, disregarding transients

3.18 medium-duty truck
vehicle designed and constructed for the carriage of goods and having a maximum mass exceeding 3,5 t but not exceeding 12 t

3.19 midi bus
vehicle designed and constructed for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass not exceeding 5 t

3.20 rated capacity
supplier's specification of the total number of ampere-hours that can be withdrawn from a fully charged battery pack or system for a specified set of test conditions such as discharge rate, temperature, discharge cut-off voltage, etc.

3.21 room temperature
RT
temperature of (25 ± 2) °C